Fabrice-TIERCELIN
commited on
Format as input
Browse files
app.py
CHANGED
@@ -14,6 +14,7 @@ import math
|
|
14 |
import time
|
15 |
import random
|
16 |
import spaces
|
|
|
17 |
from huggingface_hub import hf_hub_download
|
18 |
|
19 |
hf_hub_download(repo_id="laion/CLIP-ViT-bigG-14-laion2B-39B-b160k", filename="open_clip_pytorch_model.bin", local_dir="laion_CLIP-ViT-bigG-14-laion2B-39B-b160k")
|
@@ -86,7 +87,7 @@ def stage1_process(
|
|
86 |
gr.Warning('Set this space to GPU config to make it work.')
|
87 |
return None, None
|
88 |
torch.cuda.set_device(SUPIR_device)
|
89 |
-
LQ = HWC3(
|
90 |
LQ = fix_resize(LQ, 512)
|
91 |
# stage1
|
92 |
LQ = np.array(LQ) / 255 * 2 - 1
|
@@ -170,7 +171,7 @@ def stage2_process(
|
|
170 |
if noisy_image is None:
|
171 |
output_format = "png"
|
172 |
else:
|
173 |
-
output_format = noisy_image
|
174 |
|
175 |
if prompt is None:
|
176 |
prompt = ""
|
@@ -328,7 +329,7 @@ def restore(
|
|
328 |
elif model_select == 'v0-F':
|
329 |
model.load_state_dict(ckpt_F, strict=False)
|
330 |
model.current_model = model_select
|
331 |
-
input_image = HWC3(
|
332 |
input_image = upscale_image(input_image, upscale, unit_resolution=32,
|
333 |
min_size=min_size)
|
334 |
|
@@ -379,7 +380,7 @@ def restore(
|
|
379 |
print(information)
|
380 |
|
381 |
# Only one image can be shown in the slider
|
382 |
-
return [input_image] + [results[0]], gr.update(format = output_format, value = results), gr.update(value = information, visible = True)
|
383 |
|
384 |
def load_and_reset(param_setting):
|
385 |
print('load_and_reset ==>>')
|
@@ -474,7 +475,7 @@ with gr.Blocks() as interface:
|
|
474 |
prompt_hint = gr.HTML("You can use a <a href='"'https://huggingface.co/spaces/MaziyarPanahi/llava-llama-3-8b'"'>LlaVa space</a> to auto-generate the description of your image.")
|
475 |
upscale = gr.Radio([["x1", 1], ["x2", 2], ["x3", 3], ["x4", 4], ["x5", 5], ["x6", 6], ["x7", 7], ["x8", 8]], label="Upscale factor", info="Resolution x1 to x8", value=2, interactive=True)
|
476 |
allocation = gr.Radio([["1 min", 1], ["2 min", 2], ["3 min", 3], ["4 min", 4], ["5 min", 5], ["6 min", 6], ["7 min", 7], ["8 min", 8]], label="GPU allocation time", info="lower=May abort run, higher=Quota penalty for next runs", value=6, interactive=True)
|
477 |
-
output_format = gr.Radio([["*.png", "png"], ["*.webp", "webp"], ["*.jpeg", "jpeg"], ["*.gif", "gif"], ["*.bmp", "bmp"]], label="Image format for result", info="File extention", value="png", interactive=True)
|
478 |
|
479 |
with gr.Accordion("Pre-denoising (optional)", open=False):
|
480 |
gamma_correction = gr.Slider(label="Gamma Correction", info = "lower=lighter, higher=darker", minimum=0.1, maximum=2.0, value=1.0, step=0.1)
|
|
|
14 |
import time
|
15 |
import random
|
16 |
import spaces
|
17 |
+
import re
|
18 |
from huggingface_hub import hf_hub_download
|
19 |
|
20 |
hf_hub_download(repo_id="laion/CLIP-ViT-bigG-14-laion2B-39B-b160k", filename="open_clip_pytorch_model.bin", local_dir="laion_CLIP-ViT-bigG-14-laion2B-39B-b160k")
|
|
|
87 |
gr.Warning('Set this space to GPU config to make it work.')
|
88 |
return None, None
|
89 |
torch.cuda.set_device(SUPIR_device)
|
90 |
+
LQ = HWC3(Image.open(input_image))
|
91 |
LQ = fix_resize(LQ, 512)
|
92 |
# stage1
|
93 |
LQ = np.array(LQ) / 255 * 2 - 1
|
|
|
171 |
if noisy_image is None:
|
172 |
output_format = "png"
|
173 |
else:
|
174 |
+
output_format = re.sub(r"^.*\.([^\.]+)$", "\1", noisy_image)
|
175 |
|
176 |
if prompt is None:
|
177 |
prompt = ""
|
|
|
329 |
elif model_select == 'v0-F':
|
330 |
model.load_state_dict(ckpt_F, strict=False)
|
331 |
model.current_model = model_select
|
332 |
+
input_image = HWC3(input_image)
|
333 |
input_image = upscale_image(input_image, upscale, unit_resolution=32,
|
334 |
min_size=min_size)
|
335 |
|
|
|
380 |
print(information)
|
381 |
|
382 |
# Only one image can be shown in the slider
|
383 |
+
return [input_image] + [results[0]], gr.update(label="Downloadable results in *." + output_format + " format", format = output_format, value = results), gr.update(value = information, visible = True)
|
384 |
|
385 |
def load_and_reset(param_setting):
|
386 |
print('load_and_reset ==>>')
|
|
|
475 |
prompt_hint = gr.HTML("You can use a <a href='"'https://huggingface.co/spaces/MaziyarPanahi/llava-llama-3-8b'"'>LlaVa space</a> to auto-generate the description of your image.")
|
476 |
upscale = gr.Radio([["x1", 1], ["x2", 2], ["x3", 3], ["x4", 4], ["x5", 5], ["x6", 6], ["x7", 7], ["x8", 8]], label="Upscale factor", info="Resolution x1 to x8", value=2, interactive=True)
|
477 |
allocation = gr.Radio([["1 min", 1], ["2 min", 2], ["3 min", 3], ["4 min", 4], ["5 min", 5], ["6 min", 6], ["7 min", 7], ["8 min", 8]], label="GPU allocation time", info="lower=May abort run, higher=Quota penalty for next runs", value=6, interactive=True)
|
478 |
+
output_format = gr.Radio([["As input", "input"], ["*.png", "png"], ["*.webp", "webp"], ["*.jpeg", "jpeg"], ["*.gif", "gif"], ["*.bmp", "bmp"]], label="Image format for result", info="File extention", value="png", interactive=True)
|
479 |
|
480 |
with gr.Accordion("Pre-denoising (optional)", open=False):
|
481 |
gamma_correction = gr.Slider(label="Gamma Correction", info = "lower=lighter, higher=darker", minimum=0.1, maximum=2.0, value=1.0, step=0.1)
|