Fabrice-TIERCELIN
commited on
Start batchify_denoise
Browse files- SUPIR/models/SUPIR_model.py +197 -195
SUPIR/models/SUPIR_model.py
CHANGED
@@ -1,195 +1,197 @@
|
|
1 |
-
import torch
|
2 |
-
from sgm.models.diffusion import DiffusionEngine
|
3 |
-
from sgm.util import instantiate_from_config
|
4 |
-
import copy
|
5 |
-
from sgm.modules.distributions.distributions import DiagonalGaussianDistribution
|
6 |
-
import random
|
7 |
-
from SUPIR.utils.colorfix import wavelet_reconstruction, adaptive_instance_normalization
|
8 |
-
from pytorch_lightning import seed_everything
|
9 |
-
from torch.nn.functional import interpolate
|
10 |
-
from SUPIR.utils.tilevae import VAEHook
|
11 |
-
|
12 |
-
class SUPIRModel(DiffusionEngine):
|
13 |
-
def __init__(self, control_stage_config, ae_dtype='fp32', diffusion_dtype='fp32', p_p='', n_p='', *args, **kwargs):
|
14 |
-
super().__init__(*args, **kwargs)
|
15 |
-
control_model = instantiate_from_config(control_stage_config)
|
16 |
-
self.model.load_control_model(control_model)
|
17 |
-
self.first_stage_model.denoise_encoder = copy.deepcopy(self.first_stage_model.encoder)
|
18 |
-
self.sampler_config = kwargs['sampler_config']
|
19 |
-
|
20 |
-
assert (ae_dtype in ['fp32', 'fp16', 'bf16']) and (diffusion_dtype in ['fp32', 'fp16', 'bf16'])
|
21 |
-
if ae_dtype == 'fp32':
|
22 |
-
ae_dtype = torch.float32
|
23 |
-
elif ae_dtype == 'fp16':
|
24 |
-
raise RuntimeError('fp16 cause NaN in AE')
|
25 |
-
elif ae_dtype == 'bf16':
|
26 |
-
ae_dtype = torch.bfloat16
|
27 |
-
|
28 |
-
if diffusion_dtype == 'fp32':
|
29 |
-
diffusion_dtype = torch.float32
|
30 |
-
elif diffusion_dtype == 'fp16':
|
31 |
-
diffusion_dtype = torch.float16
|
32 |
-
elif diffusion_dtype == 'bf16':
|
33 |
-
diffusion_dtype = torch.bfloat16
|
34 |
-
|
35 |
-
self.ae_dtype = ae_dtype
|
36 |
-
self.model.dtype = diffusion_dtype
|
37 |
-
|
38 |
-
self.p_p = p_p
|
39 |
-
self.n_p = n_p
|
40 |
-
|
41 |
-
@torch.no_grad()
|
42 |
-
def encode_first_stage(self, x):
|
43 |
-
with torch.autocast("cuda", dtype=self.ae_dtype):
|
44 |
-
z = self.first_stage_model.encode(x)
|
45 |
-
z = self.scale_factor * z
|
46 |
-
return z
|
47 |
-
|
48 |
-
@torch.no_grad()
|
49 |
-
def encode_first_stage_with_denoise(self, x, use_sample=True, is_stage1=False):
|
50 |
-
with torch.autocast("cuda", dtype=self.ae_dtype):
|
51 |
-
if is_stage1:
|
52 |
-
h = self.first_stage_model.denoise_encoder_s1(x)
|
53 |
-
else:
|
54 |
-
h = self.first_stage_model.denoise_encoder(x)
|
55 |
-
moments = self.first_stage_model.quant_conv(h)
|
56 |
-
posterior = DiagonalGaussianDistribution(moments)
|
57 |
-
if use_sample:
|
58 |
-
z = posterior.sample()
|
59 |
-
else:
|
60 |
-
z = posterior.mode()
|
61 |
-
z = self.scale_factor * z
|
62 |
-
return z
|
63 |
-
|
64 |
-
@torch.no_grad()
|
65 |
-
def decode_first_stage(self, z):
|
66 |
-
z = 1.0 / self.scale_factor * z
|
67 |
-
with torch.autocast("cuda", dtype=self.ae_dtype):
|
68 |
-
out = self.first_stage_model.decode(z)
|
69 |
-
return out.float()
|
70 |
-
|
71 |
-
@torch.no_grad()
|
72 |
-
def batchify_denoise(self, x, is_stage1=False):
|
73 |
-
'''
|
74 |
-
[N, C, H, W], [-1, 1], RGB
|
75 |
-
'''
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
'''
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
if
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
self.sampler_config.params.guider_config.params.
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
self.sampler_config.params.
|
111 |
-
self.
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
samples =
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
self.first_stage_model.
|
142 |
-
self.first_stage_model.
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
batch
|
156 |
-
batch['
|
157 |
-
batch['
|
158 |
-
batch['
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
_c,
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
model
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from sgm.models.diffusion import DiffusionEngine
|
3 |
+
from sgm.util import instantiate_from_config
|
4 |
+
import copy
|
5 |
+
from sgm.modules.distributions.distributions import DiagonalGaussianDistribution
|
6 |
+
import random
|
7 |
+
from SUPIR.utils.colorfix import wavelet_reconstruction, adaptive_instance_normalization
|
8 |
+
from pytorch_lightning import seed_everything
|
9 |
+
from torch.nn.functional import interpolate
|
10 |
+
from SUPIR.utils.tilevae import VAEHook
|
11 |
+
|
12 |
+
class SUPIRModel(DiffusionEngine):
|
13 |
+
def __init__(self, control_stage_config, ae_dtype='fp32', diffusion_dtype='fp32', p_p='', n_p='', *args, **kwargs):
|
14 |
+
super().__init__(*args, **kwargs)
|
15 |
+
control_model = instantiate_from_config(control_stage_config)
|
16 |
+
self.model.load_control_model(control_model)
|
17 |
+
self.first_stage_model.denoise_encoder = copy.deepcopy(self.first_stage_model.encoder)
|
18 |
+
self.sampler_config = kwargs['sampler_config']
|
19 |
+
|
20 |
+
assert (ae_dtype in ['fp32', 'fp16', 'bf16']) and (diffusion_dtype in ['fp32', 'fp16', 'bf16'])
|
21 |
+
if ae_dtype == 'fp32':
|
22 |
+
ae_dtype = torch.float32
|
23 |
+
elif ae_dtype == 'fp16':
|
24 |
+
raise RuntimeError('fp16 cause NaN in AE')
|
25 |
+
elif ae_dtype == 'bf16':
|
26 |
+
ae_dtype = torch.bfloat16
|
27 |
+
|
28 |
+
if diffusion_dtype == 'fp32':
|
29 |
+
diffusion_dtype = torch.float32
|
30 |
+
elif diffusion_dtype == 'fp16':
|
31 |
+
diffusion_dtype = torch.float16
|
32 |
+
elif diffusion_dtype == 'bf16':
|
33 |
+
diffusion_dtype = torch.bfloat16
|
34 |
+
|
35 |
+
self.ae_dtype = ae_dtype
|
36 |
+
self.model.dtype = diffusion_dtype
|
37 |
+
|
38 |
+
self.p_p = p_p
|
39 |
+
self.n_p = n_p
|
40 |
+
|
41 |
+
@torch.no_grad()
|
42 |
+
def encode_first_stage(self, x):
|
43 |
+
with torch.autocast("cuda", dtype=self.ae_dtype):
|
44 |
+
z = self.first_stage_model.encode(x)
|
45 |
+
z = self.scale_factor * z
|
46 |
+
return z
|
47 |
+
|
48 |
+
@torch.no_grad()
|
49 |
+
def encode_first_stage_with_denoise(self, x, use_sample=True, is_stage1=False):
|
50 |
+
with torch.autocast("cuda", dtype=self.ae_dtype):
|
51 |
+
if is_stage1:
|
52 |
+
h = self.first_stage_model.denoise_encoder_s1(x)
|
53 |
+
else:
|
54 |
+
h = self.first_stage_model.denoise_encoder(x)
|
55 |
+
moments = self.first_stage_model.quant_conv(h)
|
56 |
+
posterior = DiagonalGaussianDistribution(moments)
|
57 |
+
if use_sample:
|
58 |
+
z = posterior.sample()
|
59 |
+
else:
|
60 |
+
z = posterior.mode()
|
61 |
+
z = self.scale_factor * z
|
62 |
+
return z
|
63 |
+
|
64 |
+
@torch.no_grad()
|
65 |
+
def decode_first_stage(self, z):
|
66 |
+
z = 1.0 / self.scale_factor * z
|
67 |
+
with torch.autocast("cuda", dtype=self.ae_dtype):
|
68 |
+
out = self.first_stage_model.decode(z)
|
69 |
+
return out.float()
|
70 |
+
|
71 |
+
@torch.no_grad()
|
72 |
+
def batchify_denoise(self, x, is_stage1=False):
|
73 |
+
'''
|
74 |
+
[N, C, H, W], [-1, 1], RGB
|
75 |
+
'''
|
76 |
+
print('Start batchify_denoise')
|
77 |
+
x = self.encode_first_stage_with_denoise(x, use_sample=False, is_stage1=is_stage1)
|
78 |
+
print('End batchify_denoise')
|
79 |
+
return self.decode_first_stage(x)
|
80 |
+
|
81 |
+
@torch.no_grad()
|
82 |
+
def batchify_sample(self, x, p, p_p='default', n_p='default', num_steps=100, restoration_scale=4.0, s_churn=0, s_noise=1.003, cfg_scale=4.0, seed=-1,
|
83 |
+
num_samples=1, control_scale=1, color_fix_type='None', use_linear_CFG=False, use_linear_control_scale=False,
|
84 |
+
cfg_scale_start=1.0, control_scale_start=0.0, **kwargs):
|
85 |
+
'''
|
86 |
+
[N, C], [-1, 1], RGB
|
87 |
+
'''
|
88 |
+
assert len(x) == len(p)
|
89 |
+
assert color_fix_type in ['Wavelet', 'AdaIn', 'None']
|
90 |
+
|
91 |
+
N = len(x)
|
92 |
+
if num_samples > 1:
|
93 |
+
assert N == 1
|
94 |
+
N = num_samples
|
95 |
+
x = x.repeat(N, 1, 1, 1)
|
96 |
+
p = p * N
|
97 |
+
|
98 |
+
if p_p == 'default':
|
99 |
+
p_p = self.p_p
|
100 |
+
if n_p == 'default':
|
101 |
+
n_p = self.n_p
|
102 |
+
|
103 |
+
self.sampler_config.params.num_steps = num_steps
|
104 |
+
if use_linear_CFG:
|
105 |
+
self.sampler_config.params.guider_config.params.scale_min = cfg_scale
|
106 |
+
self.sampler_config.params.guider_config.params.scale = cfg_scale_start
|
107 |
+
else:
|
108 |
+
self.sampler_config.params.guider_config.params.scale_min = cfg_scale
|
109 |
+
self.sampler_config.params.guider_config.params.scale = cfg_scale
|
110 |
+
self.sampler_config.params.restore_cfg = restoration_scale
|
111 |
+
self.sampler_config.params.s_churn = s_churn
|
112 |
+
self.sampler_config.params.s_noise = s_noise
|
113 |
+
self.sampler = instantiate_from_config(self.sampler_config)
|
114 |
+
|
115 |
+
if seed == -1:
|
116 |
+
seed = random.randint(0, 65535)
|
117 |
+
seed_everything(seed)
|
118 |
+
|
119 |
+
_z = self.encode_first_stage_with_denoise(x, use_sample=False)
|
120 |
+
x_stage1 = self.decode_first_stage(_z)
|
121 |
+
z_stage1 = self.encode_first_stage(x_stage1)
|
122 |
+
|
123 |
+
c, uc = self.prepare_condition(_z, p, p_p, n_p, N)
|
124 |
+
|
125 |
+
denoiser = lambda input, sigma, c, control_scale: self.denoiser(
|
126 |
+
self.model, input, sigma, c, control_scale, **kwargs
|
127 |
+
)
|
128 |
+
|
129 |
+
noised_z = torch.randn_like(_z).to(_z.device)
|
130 |
+
|
131 |
+
_samples = self.sampler(denoiser, noised_z, cond=c, uc=uc, x_center=z_stage1, control_scale=control_scale,
|
132 |
+
use_linear_control_scale=use_linear_control_scale, control_scale_start=control_scale_start)
|
133 |
+
samples = self.decode_first_stage(_samples)
|
134 |
+
if color_fix_type == 'Wavelet':
|
135 |
+
samples = wavelet_reconstruction(samples, x_stage1)
|
136 |
+
elif color_fix_type == 'AdaIn':
|
137 |
+
samples = adaptive_instance_normalization(samples, x_stage1)
|
138 |
+
return samples
|
139 |
+
|
140 |
+
def init_tile_vae(self, encoder_tile_size=512, decoder_tile_size=64):
|
141 |
+
self.first_stage_model.denoise_encoder.original_forward = self.first_stage_model.denoise_encoder.forward
|
142 |
+
self.first_stage_model.encoder.original_forward = self.first_stage_model.encoder.forward
|
143 |
+
self.first_stage_model.decoder.original_forward = self.first_stage_model.decoder.forward
|
144 |
+
self.first_stage_model.denoise_encoder.forward = VAEHook(
|
145 |
+
self.first_stage_model.denoise_encoder, encoder_tile_size, is_decoder=False, fast_decoder=False,
|
146 |
+
fast_encoder=False, color_fix=False, to_gpu=True)
|
147 |
+
self.first_stage_model.encoder.forward = VAEHook(
|
148 |
+
self.first_stage_model.encoder, encoder_tile_size, is_decoder=False, fast_decoder=False,
|
149 |
+
fast_encoder=False, color_fix=False, to_gpu=True)
|
150 |
+
self.first_stage_model.decoder.forward = VAEHook(
|
151 |
+
self.first_stage_model.decoder, decoder_tile_size, is_decoder=True, fast_decoder=False,
|
152 |
+
fast_encoder=False, color_fix=False, to_gpu=True)
|
153 |
+
|
154 |
+
def prepare_condition(self, _z, p, p_p, n_p, N):
|
155 |
+
batch = {}
|
156 |
+
batch['original_size_as_tuple'] = torch.tensor([1024, 1024]).repeat(N, 1).to(_z.device)
|
157 |
+
batch['crop_coords_top_left'] = torch.tensor([0, 0]).repeat(N, 1).to(_z.device)
|
158 |
+
batch['target_size_as_tuple'] = torch.tensor([1024, 1024]).repeat(N, 1).to(_z.device)
|
159 |
+
batch['aesthetic_score'] = torch.tensor([9.0]).repeat(N, 1).to(_z.device)
|
160 |
+
batch['control'] = _z
|
161 |
+
|
162 |
+
batch_uc = copy.deepcopy(batch)
|
163 |
+
batch_uc['txt'] = [n_p for _ in p]
|
164 |
+
|
165 |
+
if not isinstance(p[0], list):
|
166 |
+
batch['txt'] = [''.join([_p, p_p]) for _p in p]
|
167 |
+
with torch.cuda.amp.autocast(dtype=self.ae_dtype):
|
168 |
+
c, uc = self.conditioner.get_unconditional_conditioning(batch, batch_uc)
|
169 |
+
else:
|
170 |
+
assert len(p) == 1, 'Support bs=1 only for local prompt conditioning.'
|
171 |
+
p_tiles = p[0]
|
172 |
+
c = []
|
173 |
+
for i, p_tile in enumerate(p_tiles):
|
174 |
+
batch['txt'] = [''.join([p_tile, p_p])]
|
175 |
+
with torch.cuda.amp.autocast(dtype=self.ae_dtype):
|
176 |
+
if i == 0:
|
177 |
+
_c, uc = self.conditioner.get_unconditional_conditioning(batch, batch_uc)
|
178 |
+
else:
|
179 |
+
_c, _ = self.conditioner.get_unconditional_conditioning(batch, None)
|
180 |
+
c.append(_c)
|
181 |
+
return c, uc
|
182 |
+
|
183 |
+
|
184 |
+
if __name__ == '__main__':
|
185 |
+
from SUPIR.util import create_model, load_state_dict
|
186 |
+
|
187 |
+
model = create_model('../../options/dev/SUPIR_paper_version.yaml')
|
188 |
+
|
189 |
+
SDXL_CKPT = '/opt/data/private/AIGC_pretrain/SDXL_cache/sd_xl_base_1.0_0.9vae.safetensors'
|
190 |
+
SUPIR_CKPT = '/opt/data/private/AIGC_pretrain/SUPIR_cache/SUPIR-paper.ckpt'
|
191 |
+
model.load_state_dict(load_state_dict(SDXL_CKPT), strict=False)
|
192 |
+
model.load_state_dict(load_state_dict(SUPIR_CKPT), strict=False)
|
193 |
+
model = model.cuda()
|
194 |
+
|
195 |
+
x = torch.randn(1, 3, 512, 512).cuda()
|
196 |
+
p = ['a professional, detailed, high-quality photo']
|
197 |
+
samples = model.batchify_sample(x, p, num_steps=50, restoration_scale=4.0, s_churn=0, cfg_scale=4.0, seed=-1, num_samples=1)
|