Fabrice-TIERCELIN commited on
Commit
706e01a
·
verified ·
1 Parent(s): b88c0c5
Files changed (1) hide show
  1. gradio_demo.py +4 -43
gradio_demo.py CHANGED
@@ -117,6 +117,7 @@ def llave_process(input_image, temperature, top_p, qs=None):
117
  print('<<== llave_process')
118
  return captions[0]
119
 
 
120
  def stage2_process(
121
  noisy_image,
122
  denoise_image,
@@ -160,6 +161,7 @@ def stage2_process(
160
  if 1 < downscale:
161
  input_height, input_width, input_channel = np.array(input_image).shape
162
  input_image = input_image.resize((input_width // downscale, input_height // downscale), Image.LANCZOS)
 
163
  event_id = str(time.time_ns())
164
  event_dict = {'event_id': event_id, 'localtime': time.ctime(), 'prompt': prompt, 'a_prompt': a_prompt,
165
  'n_prompt': n_prompt, 'num_samples': num_samples, 'upscale': upscale, 'edm_steps': edm_steps,
@@ -180,47 +182,6 @@ def stage2_process(
180
  input_image = upscale_image(input_image, upscale, unit_resolution=32,
181
  min_size=min_size)
182
 
183
- result_slider, result_gallery, restore_information, event_id = restore(
184
- model,
185
- edm_steps,
186
- s_stage1,
187
- s_churn,
188
- s_noise,
189
- s_cfg,
190
- s_stage2,
191
- seed,
192
- num_samples,
193
- a_prompt,
194
- n_prompt,
195
- color_fix_type,
196
- linear_CFG,
197
- linear_s_stage2,
198
- spt_linear_CFG,
199
- spt_linear_s_stage2
200
- )
201
-
202
- return result_slider, result_gallery, restore_information, event_id
203
-
204
- @spaces.GPU(duration=540)
205
- def restore(
206
- model,
207
- edm_steps,
208
- s_stage1,
209
- s_churn,
210
- s_noise,
211
- s_cfg,
212
- s_stage2,
213
- seed,
214
- num_samples,
215
- a_prompt,
216
- n_prompt,
217
- color_fix_type,
218
- linear_CFG,
219
- linear_s_stage2,
220
- spt_linear_CFG,
221
- spt_linear_s_stage2
222
- ):
223
- torch.cuda.set_device(SUPIR_device)
224
  LQ = np.array(input_image) / 255.0
225
  LQ = np.power(LQ, gamma_correction)
226
  LQ *= 255.0
@@ -328,7 +289,7 @@ def submit_feedback(event_id, fb_score, fb_text):
328
 
329
  title_html = """
330
  <h1><center>SUPIR</center></h1>
331
- <center><big>Upscale your images up to x8 freely, without account, without watermark and download it</big></center>
332
  <center><big><big>🤸<big><big><big><big><big><big>🤸</big></big></big></big></big></big></big></big></center>
333
 
334
  <p>This is an online demo of SUPIR, a practicing model scaling for photo-realistic image restoration.
@@ -366,6 +327,7 @@ with gr.Blocks(title="SUPIR") as interface:
366
  input_image = gr.Image(label="Input", show_label=True, type="numpy", height=600, elem_id="image-input")
367
  with gr.Group():
368
  prompt = gr.Textbox(label="Image description for LlaVa", value="", placeholder="A person, walking, in a town, Summer, photorealistic", lines=3, visible=False)
 
369
  a_prompt = gr.Textbox(label="Image description",
370
  info="Help the AI understand what the image represents; describe as much as possible",
371
  value='Cinematic, High Contrast, highly detailed, taken using a Canon EOS R '
@@ -374,7 +336,6 @@ with gr.Blocks(title="SUPIR") as interface:
374
  'hyper sharpness, perfect without deformations.',
375
  lines=3)
376
  a_prompt_hint = gr.HTML("You can use a <a href='"'https://huggingface.co/spaces/MaziyarPanahi/llava-llama-3-8b'"'>LlaVa space</a> to auto-generate the description of your image.")
377
- upscale = gr.Radio([["x1", 1], ["x2", 2], ["x3", 3], ["x4", 4], ["x5", 5], ["x6", 6], ["x7", 7], ["x8", 8]], label="Upscale factor", info="Resolution x1 to x8", value=2, interactive=True)
378
  output_format = gr.Radio([["*.png", "png"], ["*.webp", "webp"], ["*.jpeg", "jpeg"], ["*.gif", "gif"], ["*.bmp", "bmp"]], label="Image format for result", info="File extention", value="png", interactive=True)
379
 
380
  with gr.Accordion("Pre-denoising (optional)", open=False):
 
117
  print('<<== llave_process')
118
  return captions[0]
119
 
120
+ @spaces.GPU(duration=540)
121
  def stage2_process(
122
  noisy_image,
123
  denoise_image,
 
161
  if 1 < downscale:
162
  input_height, input_width, input_channel = np.array(input_image).shape
163
  input_image = input_image.resize((input_width // downscale, input_height // downscale), Image.LANCZOS)
164
+ torch.cuda.set_device(SUPIR_device)
165
  event_id = str(time.time_ns())
166
  event_dict = {'event_id': event_id, 'localtime': time.ctime(), 'prompt': prompt, 'a_prompt': a_prompt,
167
  'n_prompt': n_prompt, 'num_samples': num_samples, 'upscale': upscale, 'edm_steps': edm_steps,
 
182
  input_image = upscale_image(input_image, upscale, unit_resolution=32,
183
  min_size=min_size)
184
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
185
  LQ = np.array(input_image) / 255.0
186
  LQ = np.power(LQ, gamma_correction)
187
  LQ *= 255.0
 
289
 
290
  title_html = """
291
  <h1><center>SUPIR</center></h1>
292
+ <big><center>Upscale your images up to x8 freely, without account, without watermark and download it</center></big>
293
  <center><big><big>🤸<big><big><big><big><big><big>🤸</big></big></big></big></big></big></big></big></center>
294
 
295
  <p>This is an online demo of SUPIR, a practicing model scaling for photo-realistic image restoration.
 
327
  input_image = gr.Image(label="Input", show_label=True, type="numpy", height=600, elem_id="image-input")
328
  with gr.Group():
329
  prompt = gr.Textbox(label="Image description for LlaVa", value="", placeholder="A person, walking, in a town, Summer, photorealistic", lines=3, visible=False)
330
+ upscale = gr.Radio([["x1", 1], ["x2", 2], ["x3", 3], ["x4", 4], ["x5", 5], ["x6", 6], ["x7", 7], ["x8", 8]], label="Upscale factor", info="Resolution x1 to x8", value=2, interactive=True)
331
  a_prompt = gr.Textbox(label="Image description",
332
  info="Help the AI understand what the image represents; describe as much as possible",
333
  value='Cinematic, High Contrast, highly detailed, taken using a Canon EOS R '
 
336
  'hyper sharpness, perfect without deformations.',
337
  lines=3)
338
  a_prompt_hint = gr.HTML("You can use a <a href='"'https://huggingface.co/spaces/MaziyarPanahi/llava-llama-3-8b'"'>LlaVa space</a> to auto-generate the description of your image.")
 
339
  output_format = gr.Radio([["*.png", "png"], ["*.webp", "webp"], ["*.jpeg", "jpeg"], ["*.gif", "gif"], ["*.bmp", "bmp"]], label="Image format for result", info="File extention", value="png", interactive=True)
340
 
341
  with gr.Accordion("Pre-denoising (optional)", open=False):