Fabrice-TIERCELIN
commited on
Rollback
Browse files- gradio_demo.py +4 -43
gradio_demo.py
CHANGED
@@ -117,6 +117,7 @@ def llave_process(input_image, temperature, top_p, qs=None):
|
|
117 |
print('<<== llave_process')
|
118 |
return captions[0]
|
119 |
|
|
|
120 |
def stage2_process(
|
121 |
noisy_image,
|
122 |
denoise_image,
|
@@ -160,6 +161,7 @@ def stage2_process(
|
|
160 |
if 1 < downscale:
|
161 |
input_height, input_width, input_channel = np.array(input_image).shape
|
162 |
input_image = input_image.resize((input_width // downscale, input_height // downscale), Image.LANCZOS)
|
|
|
163 |
event_id = str(time.time_ns())
|
164 |
event_dict = {'event_id': event_id, 'localtime': time.ctime(), 'prompt': prompt, 'a_prompt': a_prompt,
|
165 |
'n_prompt': n_prompt, 'num_samples': num_samples, 'upscale': upscale, 'edm_steps': edm_steps,
|
@@ -180,47 +182,6 @@ def stage2_process(
|
|
180 |
input_image = upscale_image(input_image, upscale, unit_resolution=32,
|
181 |
min_size=min_size)
|
182 |
|
183 |
-
result_slider, result_gallery, restore_information, event_id = restore(
|
184 |
-
model,
|
185 |
-
edm_steps,
|
186 |
-
s_stage1,
|
187 |
-
s_churn,
|
188 |
-
s_noise,
|
189 |
-
s_cfg,
|
190 |
-
s_stage2,
|
191 |
-
seed,
|
192 |
-
num_samples,
|
193 |
-
a_prompt,
|
194 |
-
n_prompt,
|
195 |
-
color_fix_type,
|
196 |
-
linear_CFG,
|
197 |
-
linear_s_stage2,
|
198 |
-
spt_linear_CFG,
|
199 |
-
spt_linear_s_stage2
|
200 |
-
)
|
201 |
-
|
202 |
-
return result_slider, result_gallery, restore_information, event_id
|
203 |
-
|
204 |
-
@spaces.GPU(duration=540)
|
205 |
-
def restore(
|
206 |
-
model,
|
207 |
-
edm_steps,
|
208 |
-
s_stage1,
|
209 |
-
s_churn,
|
210 |
-
s_noise,
|
211 |
-
s_cfg,
|
212 |
-
s_stage2,
|
213 |
-
seed,
|
214 |
-
num_samples,
|
215 |
-
a_prompt,
|
216 |
-
n_prompt,
|
217 |
-
color_fix_type,
|
218 |
-
linear_CFG,
|
219 |
-
linear_s_stage2,
|
220 |
-
spt_linear_CFG,
|
221 |
-
spt_linear_s_stage2
|
222 |
-
):
|
223 |
-
torch.cuda.set_device(SUPIR_device)
|
224 |
LQ = np.array(input_image) / 255.0
|
225 |
LQ = np.power(LQ, gamma_correction)
|
226 |
LQ *= 255.0
|
@@ -328,7 +289,7 @@ def submit_feedback(event_id, fb_score, fb_text):
|
|
328 |
|
329 |
title_html = """
|
330 |
<h1><center>SUPIR</center></h1>
|
331 |
-
<center
|
332 |
<center><big><big>🤸<big><big><big><big><big><big>🤸</big></big></big></big></big></big></big></big></center>
|
333 |
|
334 |
<p>This is an online demo of SUPIR, a practicing model scaling for photo-realistic image restoration.
|
@@ -366,6 +327,7 @@ with gr.Blocks(title="SUPIR") as interface:
|
|
366 |
input_image = gr.Image(label="Input", show_label=True, type="numpy", height=600, elem_id="image-input")
|
367 |
with gr.Group():
|
368 |
prompt = gr.Textbox(label="Image description for LlaVa", value="", placeholder="A person, walking, in a town, Summer, photorealistic", lines=3, visible=False)
|
|
|
369 |
a_prompt = gr.Textbox(label="Image description",
|
370 |
info="Help the AI understand what the image represents; describe as much as possible",
|
371 |
value='Cinematic, High Contrast, highly detailed, taken using a Canon EOS R '
|
@@ -374,7 +336,6 @@ with gr.Blocks(title="SUPIR") as interface:
|
|
374 |
'hyper sharpness, perfect without deformations.',
|
375 |
lines=3)
|
376 |
a_prompt_hint = gr.HTML("You can use a <a href='"'https://huggingface.co/spaces/MaziyarPanahi/llava-llama-3-8b'"'>LlaVa space</a> to auto-generate the description of your image.")
|
377 |
-
upscale = gr.Radio([["x1", 1], ["x2", 2], ["x3", 3], ["x4", 4], ["x5", 5], ["x6", 6], ["x7", 7], ["x8", 8]], label="Upscale factor", info="Resolution x1 to x8", value=2, interactive=True)
|
378 |
output_format = gr.Radio([["*.png", "png"], ["*.webp", "webp"], ["*.jpeg", "jpeg"], ["*.gif", "gif"], ["*.bmp", "bmp"]], label="Image format for result", info="File extention", value="png", interactive=True)
|
379 |
|
380 |
with gr.Accordion("Pre-denoising (optional)", open=False):
|
|
|
117 |
print('<<== llave_process')
|
118 |
return captions[0]
|
119 |
|
120 |
+
@spaces.GPU(duration=540)
|
121 |
def stage2_process(
|
122 |
noisy_image,
|
123 |
denoise_image,
|
|
|
161 |
if 1 < downscale:
|
162 |
input_height, input_width, input_channel = np.array(input_image).shape
|
163 |
input_image = input_image.resize((input_width // downscale, input_height // downscale), Image.LANCZOS)
|
164 |
+
torch.cuda.set_device(SUPIR_device)
|
165 |
event_id = str(time.time_ns())
|
166 |
event_dict = {'event_id': event_id, 'localtime': time.ctime(), 'prompt': prompt, 'a_prompt': a_prompt,
|
167 |
'n_prompt': n_prompt, 'num_samples': num_samples, 'upscale': upscale, 'edm_steps': edm_steps,
|
|
|
182 |
input_image = upscale_image(input_image, upscale, unit_resolution=32,
|
183 |
min_size=min_size)
|
184 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
185 |
LQ = np.array(input_image) / 255.0
|
186 |
LQ = np.power(LQ, gamma_correction)
|
187 |
LQ *= 255.0
|
|
|
289 |
|
290 |
title_html = """
|
291 |
<h1><center>SUPIR</center></h1>
|
292 |
+
<big><center>Upscale your images up to x8 freely, without account, without watermark and download it</center></big>
|
293 |
<center><big><big>🤸<big><big><big><big><big><big>🤸</big></big></big></big></big></big></big></big></center>
|
294 |
|
295 |
<p>This is an online demo of SUPIR, a practicing model scaling for photo-realistic image restoration.
|
|
|
327 |
input_image = gr.Image(label="Input", show_label=True, type="numpy", height=600, elem_id="image-input")
|
328 |
with gr.Group():
|
329 |
prompt = gr.Textbox(label="Image description for LlaVa", value="", placeholder="A person, walking, in a town, Summer, photorealistic", lines=3, visible=False)
|
330 |
+
upscale = gr.Radio([["x1", 1], ["x2", 2], ["x3", 3], ["x4", 4], ["x5", 5], ["x6", 6], ["x7", 7], ["x8", 8]], label="Upscale factor", info="Resolution x1 to x8", value=2, interactive=True)
|
331 |
a_prompt = gr.Textbox(label="Image description",
|
332 |
info="Help the AI understand what the image represents; describe as much as possible",
|
333 |
value='Cinematic, High Contrast, highly detailed, taken using a Canon EOS R '
|
|
|
336 |
'hyper sharpness, perfect without deformations.',
|
337 |
lines=3)
|
338 |
a_prompt_hint = gr.HTML("You can use a <a href='"'https://huggingface.co/spaces/MaziyarPanahi/llava-llama-3-8b'"'>LlaVa space</a> to auto-generate the description of your image.")
|
|
|
339 |
output_format = gr.Radio([["*.png", "png"], ["*.webp", "webp"], ["*.jpeg", "jpeg"], ["*.gif", "gif"], ["*.bmp", "bmp"]], label="Image format for result", info="File extention", value="png", interactive=True)
|
340 |
|
341 |
with gr.Accordion("Pre-denoising (optional)", open=False):
|