Fabrice-TIERCELIN commited on
Commit
77c3bd5
1 Parent(s): f200691

denoise_image = upscale_image(denoise_image, upscale, unit_resolution=32, min_size=min_size)

Browse files
Files changed (1) hide show
  1. app.py +7 -6
app.py CHANGED
@@ -16,6 +16,8 @@ from PIL import Image
16
  from SUPIR.util import HWC3, upscale_image, fix_resize, convert_dtype, create_SUPIR_model, load_QF_ckpt
17
  from huggingface_hub import hf_hub_download
18
 
 
 
19
  hf_hub_download(repo_id="laion/CLIP-ViT-bigG-14-laion2B-39B-b160k", filename="open_clip_pytorch_model.bin", local_dir="laion_CLIP-ViT-bigG-14-laion2B-39B-b160k")
20
  hf_hub_download(repo_id="camenduru/SUPIR", filename="sd_xl_base_1.0_0.9vae.safetensors", local_dir="yushan777_SUPIR")
21
  hf_hub_download(repo_id="camenduru/SUPIR", filename="SUPIR-v0F.ckpt", local_dir="yushan777_SUPIR")
@@ -57,7 +59,7 @@ def check_upload(input_image):
57
 
58
  def update_seed(is_randomize_seed, seed):
59
  if is_randomize_seed:
60
- return random.randint(0, 2147483647)
61
  return seed
62
 
63
  def check(input_image):
@@ -206,6 +208,7 @@ def restore_in_Xmin(
206
  return [noisy_image, denoise_image], [denoise_image], None, None
207
 
208
  denoise_image = HWC3(np.array(denoise_image))
 
209
 
210
  # Allocation
211
  if allocation == 1:
@@ -331,8 +334,6 @@ def restore(
331
  elif model_select == 'v0-F':
332
  model.load_state_dict(ckpt_F, strict=False)
333
  model.current_model = model_select
334
- input_image = upscale_image(input_image, upscale, unit_resolution=32,
335
- min_size=min_size)
336
 
337
  LQ = np.array(input_image) / 255.0
338
  LQ = np.power(LQ, gamma_correction)
@@ -474,7 +475,7 @@ with gr.Blocks() as interface:
474
  prompt = gr.Textbox(label="Image description", info="Help the AI understand what the image represents; describe as much as possible, especially the details we can't see on the original image; you can write in any language", value="", placeholder="A 33 years old man, walking, in the street, Santiago, morning, Summer, photorealistic", lines=3)
475
  prompt_hint = gr.HTML("You can use a <a href='"'https://huggingface.co/spaces/MaziyarPanahi/llava-llama-3-8b'"'>LlaVa space</a> to auto-generate the description of your image.")
476
  upscale = gr.Radio([["x1", 1], ["x2", 2], ["x3", 3], ["x4", 4], ["x5", 5], ["x6", 6], ["x7", 7], ["x8", 8], ["x9", 9], ["x10", 10]], label="Upscale factor", info="Resolution x1 to x10", value=2, interactive=True)
477
- allocation = gr.Radio([["1 min", 1], ["2 min", 2], ["3 min", 3], ["4 min", 4], ["5 min", 5], ["6 min", 6], ["7 min", 7], ["8 min", 8], ["9 min (discouraged)", 9], ["10 min (discouraged)", 10]], label="GPU allocation time", info="lower=May abort run, higher=Quota penalty for next runs", value=6, interactive=True)
478
  output_format = gr.Radio([["As input", "input"], ["*.png", "png"], ["*.webp", "webp"], ["*.jpeg", "jpeg"], ["*.gif", "gif"], ["*.bmp", "bmp"]], label="Image format for result", info="File extention", value="input", interactive=True)
479
 
480
  with gr.Accordion("Pre-denoising (optional)", open=False):
@@ -526,13 +527,13 @@ with gr.Blocks() as interface:
526
  spt_linear_s_stage2 = gr.Slider(label="Guidance Start", minimum=0.,
527
  maximum=1., value=0., step=0.05)
528
  with gr.Column():
529
- diff_dtype = gr.Radio([["fp32 (precision)", "fp32"], ["fp16 (medium)", "fp16"], ["bf16 (speed)", "bf16"]], label="Diffusion Data Type", value="fp16",
530
  interactive=True)
531
  with gr.Column():
532
  ae_dtype = gr.Radio([["fp32 (precision)", "fp32"], ["bf16 (speed)", "bf16"]], label="Auto-Encoder Data Type", value="fp32",
533
  interactive=True)
534
  randomize_seed = gr.Checkbox(label = "\U0001F3B2 Randomize seed", value = True, info = "If checked, result is always different")
535
- seed = gr.Slider(label="Seed", minimum=0, maximum=2**63 - 1, step=1, randomize=True)
536
  with gr.Group():
537
  param_setting = gr.Radio(["Quality", "Fidelity"], interactive=True, label="Presetting", value="Quality")
538
  restart_button = gr.Button(value="Apply presetting")
 
16
  from SUPIR.util import HWC3, upscale_image, fix_resize, convert_dtype, create_SUPIR_model, load_QF_ckpt
17
  from huggingface_hub import hf_hub_download
18
 
19
+ max_64_bit_int = 2**63 - 1
20
+
21
  hf_hub_download(repo_id="laion/CLIP-ViT-bigG-14-laion2B-39B-b160k", filename="open_clip_pytorch_model.bin", local_dir="laion_CLIP-ViT-bigG-14-laion2B-39B-b160k")
22
  hf_hub_download(repo_id="camenduru/SUPIR", filename="sd_xl_base_1.0_0.9vae.safetensors", local_dir="yushan777_SUPIR")
23
  hf_hub_download(repo_id="camenduru/SUPIR", filename="SUPIR-v0F.ckpt", local_dir="yushan777_SUPIR")
 
59
 
60
  def update_seed(is_randomize_seed, seed):
61
  if is_randomize_seed:
62
+ return random.randint(0, max_64_bit_int)
63
  return seed
64
 
65
  def check(input_image):
 
208
  return [noisy_image, denoise_image], [denoise_image], None, None
209
 
210
  denoise_image = HWC3(np.array(denoise_image))
211
+ denoise_image = upscale_image(denoise_image, upscale, unit_resolution=32, min_size=min_size)
212
 
213
  # Allocation
214
  if allocation == 1:
 
334
  elif model_select == 'v0-F':
335
  model.load_state_dict(ckpt_F, strict=False)
336
  model.current_model = model_select
 
 
337
 
338
  LQ = np.array(input_image) / 255.0
339
  LQ = np.power(LQ, gamma_correction)
 
475
  prompt = gr.Textbox(label="Image description", info="Help the AI understand what the image represents; describe as much as possible, especially the details we can't see on the original image; you can write in any language", value="", placeholder="A 33 years old man, walking, in the street, Santiago, morning, Summer, photorealistic", lines=3)
476
  prompt_hint = gr.HTML("You can use a <a href='"'https://huggingface.co/spaces/MaziyarPanahi/llava-llama-3-8b'"'>LlaVa space</a> to auto-generate the description of your image.")
477
  upscale = gr.Radio([["x1", 1], ["x2", 2], ["x3", 3], ["x4", 4], ["x5", 5], ["x6", 6], ["x7", 7], ["x8", 8], ["x9", 9], ["x10", 10]], label="Upscale factor", info="Resolution x1 to x10", value=2, interactive=True)
478
+ allocation = gr.Radio([["1 min", 1], ["2 min", 2], ["3 min", 3], ["4 min", 4], ["5 min", 5], ["6 min", 6], ["7 min", 7], ["8 min (discouraged)", 8], ["9 min (discouraged)", 9], ["10 min (discouraged)", 10]], label="GPU allocation time", info="lower=May abort run, higher=Quota penalty for next runs", value=6, interactive=True)
479
  output_format = gr.Radio([["As input", "input"], ["*.png", "png"], ["*.webp", "webp"], ["*.jpeg", "jpeg"], ["*.gif", "gif"], ["*.bmp", "bmp"]], label="Image format for result", info="File extention", value="input", interactive=True)
480
 
481
  with gr.Accordion("Pre-denoising (optional)", open=False):
 
527
  spt_linear_s_stage2 = gr.Slider(label="Guidance Start", minimum=0.,
528
  maximum=1., value=0., step=0.05)
529
  with gr.Column():
530
+ diff_dtype = gr.Radio([["fp32 (precision)", "fp32"], ["fp16 (medium)", "fp16"], ["bf16 (speed)", "bf16"]], label="Diffusion Data Type", value="fp32",
531
  interactive=True)
532
  with gr.Column():
533
  ae_dtype = gr.Radio([["fp32 (precision)", "fp32"], ["bf16 (speed)", "bf16"]], label="Auto-Encoder Data Type", value="fp32",
534
  interactive=True)
535
  randomize_seed = gr.Checkbox(label = "\U0001F3B2 Randomize seed", value = True, info = "If checked, result is always different")
536
+ seed = gr.Slider(label="Seed", minimum=0, maximum=max_64_bit_int, step=1, randomize=True)
537
  with gr.Group():
538
  param_setting = gr.Radio(["Quality", "Fidelity"], interactive=True, label="Presetting", value="Quality")
539
  restart_button = gr.Button(value="Apply presetting")