Fabrice-TIERCELIN commited on
Commit
9244d0e
·
verified ·
1 Parent(s): bc9fe2f

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -162
app.py DELETED
@@ -1,162 +0,0 @@
1
- import spaces
2
- import gradio as gr
3
- import numpy as np
4
- from PIL import Image
5
- import cv2
6
- from moviepy.editor import VideoFileClip
7
- from share_btn import community_icon_html, loading_icon_html, share_js
8
- import torch
9
- from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler
10
- from diffusers.utils import export_to_video
11
-
12
-
13
-
14
- def convert_mp4_to_frames(video_path, duration=3):
15
- # Read the video file
16
- video = cv2.VideoCapture(video_path)
17
-
18
- # Get the frames per second (fps) of the video
19
- fps = video.get(cv2.CAP_PROP_FPS)
20
-
21
- # Calculate the number of frames to extract
22
- num_frames = int(fps * duration)
23
-
24
- frames = []
25
- frame_count = 0
26
-
27
- # Iterate through each frame
28
- while True:
29
- # Read a frame
30
- ret, frame = video.read()
31
-
32
- # If the frame was not successfully read or we have reached the desired duration, break the loop
33
- if not ret or frame_count == num_frames:
34
- break
35
-
36
- # Convert BGR to RGB
37
- frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
38
-
39
- # Append the frame to the list of frames
40
- frames.append(frame)
41
-
42
- frame_count += 1
43
-
44
- # Release the video object
45
- video.release()
46
-
47
- # Convert the list of frames to a numpy array
48
- frames = np.array(frames)
49
-
50
- return frames
51
-
52
- @spaces.GPU(duration=120)
53
- def infer(prompt, video_in, denoise_strength):
54
-
55
- negative_prompt = "text, watermark, copyright, blurry, nsfw"
56
-
57
- video = convert_mp4_to_frames(video_in, duration=3)
58
- video_resized = [Image.fromarray(frame).resize((1024, 576)) for frame in video]
59
-
60
- pipe_xl = DiffusionPipeline.from_pretrained("cerspense/zeroscope_v2_XL", torch_dtype=torch.float32, revision="refs/pr/17")
61
- pipe_xl.vae.enable_slicing()
62
- pipe_xl.scheduler = DPMSolverMultistepScheduler.from_config(pipe_xl.scheduler.config)
63
- pipe_xl.enable_model_cpu_offload()
64
- pipe_xl.to("cpu")
65
- video_frames = pipe_xl(prompt, negative_prompt=negative_prompt, video=video_resized, strength=denoise_strength).frames
66
- del pipe_xl
67
- #torch.cuda.empty_cache()
68
- video_path = export_to_video(video_frames, output_video_path="xl_result.mp4")
69
-
70
- return "xl_result.mp4", gr.Group.update(visible=True)
71
-
72
- css = """
73
- #col-container {max-width: 510px; margin-left: auto; margin-right: auto;}
74
- a {text-decoration-line: underline; font-weight: 600;}
75
- .animate-spin {
76
- animation: spin 1s linear infinite;
77
- }
78
- @keyframes spin {
79
- from {
80
- transform: rotate(0deg);
81
- }
82
- to {
83
- transform: rotate(360deg);
84
- }
85
- }
86
- #share-btn-container {
87
- display: flex;
88
- padding-left: 0.5rem !important;
89
- padding-right: 0.5rem !important;
90
- background-color: #000000;
91
- justify-content: center;
92
- align-items: center;
93
- border-radius: 9999px !important;
94
- max-width: 13rem;
95
- }
96
- #share-btn-container:hover {
97
- background-color: #060606;
98
- }
99
- #share-btn {
100
- all: initial;
101
- color: #ffffff;
102
- font-weight: 600;
103
- cursor:pointer;
104
- font-family: 'IBM Plex Sans', sans-serif;
105
- margin-left: 0.5rem !important;
106
- padding-top: 0.5rem !important;
107
- padding-bottom: 0.5rem !important;
108
- right:0;
109
- }
110
- #share-btn * {
111
- all: unset;
112
- }
113
- #share-btn-container div:nth-child(-n+2){
114
- width: auto !important;
115
- min-height: 0px !important;
116
- }
117
- #share-btn-container .wrap {
118
- display: none !important;
119
- }
120
- #share-btn-container.hidden {
121
- display: none!important;
122
- }
123
- img[src*='#center'] {
124
- display: block;
125
- margin: auto;
126
- }
127
- """
128
-
129
- with gr.Blocks(css=css) as demo:
130
- with gr.Column(elem_id="col-container"):
131
- gr.Markdown(
132
- """
133
- <h1 style="text-align: center;">Zeroscope XL</h1>
134
- <p style="text-align: center;">
135
- This space is specifically designed for upscaling content made from <br />
136
- <a href="https://huggingface.co/spaces/fffiloni/zeroscope">the zeroscope_v2_576w space</a> using vid2vid. <br />
137
- Remember to use the same prompt that was used to generate the original clip.<br />
138
- For demo purpose, video length is limited to 3 seconds.
139
- </p>
140
-
141
- [![Duplicate this Space](https://huggingface.co/datasets/huggingface/badges/raw/main/duplicate-this-space-sm.svg#center)](https://huggingface.co/spaces/fffiloni/zeroscope-XL?duplicate=true)
142
-
143
- """
144
- )
145
-
146
- video_in = gr.Video(sources=["upload"])
147
- prompt_in = gr.Textbox(label="Prompt", placeholder="This must be the same prompt you used for the original clip :)", elem_id="prompt-in")
148
- denoise_strength = gr.Slider(label="Denoise strength", minimum=0.6, maximum=0.9, step=0.01, value=0.66)
149
- #inference_steps = gr.Slider(label="Inference Steps", minimum=10, maximum=100, step=1, value=40, interactive=False)
150
- submit_btn = gr.Button("Submit")
151
- video_result = gr.Video(label="Video Output", elem_id="video-output")
152
-
153
- with gr.Group(elem_id="share-btn-container", visible=False) as share_group:
154
- community_icon = gr.HTML(community_icon_html)
155
- loading_icon = gr.HTML(loading_icon_html)
156
- share_button = gr.Button("Share to community", elem_id="share-btn")
157
-
158
- submit_btn.click(fn=infer,
159
- inputs=[prompt_in, video_in, denoise_strength],
160
- outputs=[video_result, share_group])
161
-
162
- demo.queue(max_size=12).launch()