Fabrice-TIERCELIN commited on
Commit
af4572f
1 Parent(s): 6f178a2
Files changed (1) hide show
  1. app.py +12 -96
app.py CHANGED
@@ -63,39 +63,6 @@ def update_seed(is_randomize_seed, seed):
63
  return random.randint(0, max_64_bit_int)
64
  return seed
65
 
66
- def reset():
67
- return [
68
- None,
69
- 0,
70
- None,
71
- None,
72
- "Cinematic, High Contrast, highly detailed, taken using a Canon EOS R camera, hyper detailed photo - realistic maximum detail, 32k, Color Grading, ultra HD, extreme meticulous detailing, skin pore detailing, hyper sharpness, perfect without deformations.",
73
- "painting, oil painting, illustration, drawing, art, sketch, anime, cartoon, CG Style, 3D render, unreal engine, blurring, aliasing, bokeh, ugly, dirty, messy, worst quality, low quality, frames, watermark, signature, jpeg artifacts, deformed, lowres, over-smooth",
74
- 1,
75
- 1024,
76
- 1,
77
- 2,
78
- 50,
79
- -1.0,
80
- 1.,
81
- default_setting.s_cfg_Quality if torch.cuda.device_count() > 0 else 1.0,
82
- True,
83
- random.randint(0, max_64_bit_int),
84
- 5,
85
- 1.003,
86
- "Wavelet",
87
- "fp32",
88
- "fp32",
89
- 1.0,
90
- True,
91
- False,
92
- default_setting.spt_linear_CFG_Quality if torch.cuda.device_count() > 0 else 1.0,
93
- 0.,
94
- "v0-Q",
95
- "input",
96
- 6
97
- ]
98
-
99
  def check(input_image):
100
  if input_image is None:
101
  raise gr.Error("Please provide an image to restore.")
@@ -241,7 +208,7 @@ def restore_in_Xmin(
241
 
242
  if torch.cuda.device_count() == 0:
243
  gr.Warning('Set this space to GPU config to make it work.')
244
- return [noisy_image, denoise_image], [denoise_image], None, gr.update(visible=True)
245
 
246
  if model_select != model.current_model:
247
  print('load ' + model_select)
@@ -391,7 +358,6 @@ def restore(
391
  results = [x_samples[i] for i in range(num_samples)]
392
 
393
  # All the results have the same size
394
- input_height, input_width, input_channel = np.array(input_image).shape
395
  result_height, result_width, result_channel = np.array(results[0]).shape
396
 
397
  print('<<== restore')
@@ -412,20 +378,9 @@ def restore(
412
  " pixels large and " + str(result_height) + \
413
  " pixels high, so a resolution of " + f'{result_width * result_height:,}' + " pixels."
414
  print(information)
415
- try:
416
- print("Estimated minutes: " + str(math.log(result_width * result_height * input_width * input_height * edm_steps * num_samples)))
417
- except Exception as e:
418
- print('Exception of Estimation')
419
- try:
420
- unique_name = str(uuid.uuid4()) + "." + output_format
421
- image_copy = Image.fromarray(np.array(results[0]))
422
- image_copy.save(unique_name)
423
- print(unique_name)
424
- except Exception as e:
425
- print('Exception printing the path: ' + str(e))
426
 
427
  # Only one image can be shown in the slider
428
- return [noisy_image] + [results[0]], gr.update(label="Downloadable results in *." + output_format + " format", format = output_format, value = results), gr.update(value = information, visible = True), gr.update(visible=True)
429
 
430
  def load_and_reset(param_setting):
431
  print('load_and_reset ==>>')
@@ -470,9 +425,6 @@ def log_information(result_gallery):
470
 
471
  def on_select_result(result_slider, result_gallery, evt: gr.SelectData):
472
  print('on_select_result')
473
- if result_gallery is not None:
474
- for i, result in enumerate(result_gallery):
475
- print(result[0])
476
  return [result_slider[0], result_gallery[evt.index][0]]
477
 
478
  title_html = """
@@ -558,7 +510,7 @@ with gr.Blocks() as interface:
558
  model_select = gr.Radio([["💃 Quality (v0-Q)", "v0-Q"], ["🎯 Fidelity (v0-F)", "v0-F"]], label="Model Selection", info="Pretrained model", value="v0-Q",
559
  interactive=True)
560
  with gr.Column():
561
- color_fix_type = gr.Radio([["None", "None"], ["AdaIn (improve as a photo)", "AdaIn"], ["Wavelet (for JPEG artifacts)", "Wavelet"]], label="Color-Fix Type", info="AdaIn=Improve following a style, Wavelet=For JPEG artifacts", value="Wavelet",
562
  interactive=True)
563
  s_cfg = gr.Slider(label="Text Guidance Scale", info="lower=follow the image, higher=follow the prompt", minimum=1.0, maximum=15.0,
564
  value=default_setting.s_cfg_Quality if torch.cuda.device_count() > 0 else 1.0, step=0.1)
@@ -584,16 +536,15 @@ with gr.Blocks() as interface:
584
  randomize_seed = gr.Checkbox(label = "\U0001F3B2 Randomize seed", value = True, info = "If checked, result is always different")
585
  seed = gr.Slider(label="Seed", minimum=0, maximum=max_64_bit_int, step=1, randomize=True)
586
  with gr.Group():
587
- param_setting = gr.Radio(["Quality", "Fidelity"], interactive=True, label="Presetting", value = "Quality")
588
  restart_button = gr.Button(value="Apply presetting")
589
 
590
- with gr.Column():
591
- diffusion_button = gr.Button(value="🚀 Upscale/Restore", variant = "primary", elem_id = "process_button")
592
- reset_btn = gr.Button(value="🧹 Reinit page", variant="stop", elem_id="reset_button", visible = False)
593
 
594
- restore_information = gr.HTML(value = "Restart the process to get another result.", visible = False)
595
- result_slider = ImageSlider(label = 'Comparator', show_label = False, elem_id = "slider1", show_download_button = False)
596
- result_gallery = gr.Gallery(label = 'Downloadable results', show_label = True, elem_id = "gallery1")
597
 
598
  gr.Examples(
599
  run_on_click = True,
@@ -632,8 +583,7 @@ with gr.Blocks() as interface:
632
  outputs = [
633
  result_slider,
634
  result_gallery,
635
- restore_information,
636
- reset_btn
637
  ],
638
  examples = [
639
  [
@@ -825,13 +775,11 @@ with gr.Blocks() as interface:
825
  ], outputs = [
826
  result_slider,
827
  result_gallery,
828
- restore_information,
829
- reset_btn
830
- ]).success(fn = log_information, inputs = [
831
  result_gallery
832
  ], outputs = [], queue = False, show_progress = False)
833
 
834
- result_gallery.change(on_select_result, [result_slider, result_gallery], result_slider)
835
  result_gallery.select(on_select_result, [result_slider, result_gallery], result_slider)
836
 
837
  restart_button.click(fn = load_and_reset, inputs = [
@@ -852,37 +800,5 @@ with gr.Blocks() as interface:
852
  spt_linear_s_stage2,
853
  model_select
854
  ])
855
-
856
- reset_btn.click(fn = reset, inputs = [], outputs = [
857
- input_image,
858
- rotation,
859
- denoise_image,
860
- prompt,
861
- a_prompt,
862
- n_prompt,
863
- num_samples,
864
- min_size,
865
- downscale,
866
- upscale,
867
- edm_steps,
868
- s_stage1,
869
- s_stage2,
870
- s_cfg,
871
- randomize_seed,
872
- seed,
873
- s_churn,
874
- s_noise,
875
- color_fix_type,
876
- diff_dtype,
877
- ae_dtype,
878
- gamma_correction,
879
- linear_CFG,
880
- linear_s_stage2,
881
- spt_linear_CFG,
882
- spt_linear_s_stage2,
883
- model_select,
884
- output_format,
885
- allocation
886
- ], queue = False, show_progress = False)
887
 
888
  interface.queue(10).launch()
 
63
  return random.randint(0, max_64_bit_int)
64
  return seed
65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66
  def check(input_image):
67
  if input_image is None:
68
  raise gr.Error("Please provide an image to restore.")
 
208
 
209
  if torch.cuda.device_count() == 0:
210
  gr.Warning('Set this space to GPU config to make it work.')
211
+ return [noisy_image, denoise_image], [denoise_image], None, None
212
 
213
  if model_select != model.current_model:
214
  print('load ' + model_select)
 
358
  results = [x_samples[i] for i in range(num_samples)]
359
 
360
  # All the results have the same size
 
361
  result_height, result_width, result_channel = np.array(results[0]).shape
362
 
363
  print('<<== restore')
 
378
  " pixels large and " + str(result_height) + \
379
  " pixels high, so a resolution of " + f'{result_width * result_height:,}' + " pixels."
380
  print(information)
 
 
 
 
 
 
 
 
 
 
 
381
 
382
  # Only one image can be shown in the slider
383
+ return [noisy_image] + [results[0]], gr.update(label="Downloadable results in *." + output_format + " format", format = output_format, value = results), gr.update(value = information, visible = True)
384
 
385
  def load_and_reset(param_setting):
386
  print('load_and_reset ==>>')
 
425
 
426
  def on_select_result(result_slider, result_gallery, evt: gr.SelectData):
427
  print('on_select_result')
 
 
 
428
  return [result_slider[0], result_gallery[evt.index][0]]
429
 
430
  title_html = """
 
510
  model_select = gr.Radio([["💃 Quality (v0-Q)", "v0-Q"], ["🎯 Fidelity (v0-F)", "v0-F"]], label="Model Selection", info="Pretrained model", value="v0-Q",
511
  interactive=True)
512
  with gr.Column():
513
+ color_fix_type = gr.Radio(["None", "AdaIn", "Wavelet"], label="Color-Fix Type", info="AdaIn=Improve following a style, Wavelet=For JPEG artifacts", value="Wavelet",
514
  interactive=True)
515
  s_cfg = gr.Slider(label="Text Guidance Scale", info="lower=follow the image, higher=follow the prompt", minimum=1.0, maximum=15.0,
516
  value=default_setting.s_cfg_Quality if torch.cuda.device_count() > 0 else 1.0, step=0.1)
 
536
  randomize_seed = gr.Checkbox(label = "\U0001F3B2 Randomize seed", value = True, info = "If checked, result is always different")
537
  seed = gr.Slider(label="Seed", minimum=0, maximum=max_64_bit_int, step=1, randomize=True)
538
  with gr.Group():
539
+ param_setting = gr.Radio(["Quality", "Fidelity"], interactive=True, label="Presetting", value="Quality")
540
  restart_button = gr.Button(value="Apply presetting")
541
 
542
+ with gr.Group():
543
+ diffusion_button = gr.Button(value="🚀 Upscale/Restore", variant = "primary", elem_id="process_button")
 
544
 
545
+ restore_information = gr.HTML(value="Restart the process to get another result.", visible = False)
546
+ result_slider = ImageSlider(label='Comparator', show_label=False, elem_id="slider1", show_download_button = False)
547
+ result_gallery = gr.Gallery(label='Downloadable results', show_label=True, elem_id="gallery1")
548
 
549
  gr.Examples(
550
  run_on_click = True,
 
583
  outputs = [
584
  result_slider,
585
  result_gallery,
586
+ restore_information
 
587
  ],
588
  examples = [
589
  [
 
775
  ], outputs = [
776
  result_slider,
777
  result_gallery,
778
+ restore_information
779
+ ]).then(fn = log_information, inputs = [
 
780
  result_gallery
781
  ], outputs = [], queue = False, show_progress = False)
782
 
 
783
  result_gallery.select(on_select_result, [result_slider, result_gallery], result_slider)
784
 
785
  restart_button.click(fn = load_and_reset, inputs = [
 
800
  spt_linear_s_stage2,
801
  model_select
802
  ])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
803
 
804
  interface.queue(10).launch()