Fabrice-TIERCELIN commited on
Commit
da3b33e
1 Parent(s): 1f33c65

Remove Llava

Browse files
Files changed (1) hide show
  1. app.py +8 -22
app.py CHANGED
@@ -1,13 +1,8 @@
1
  import os
2
-
3
  import gradio as gr
4
- from gradio_imageslider import ImageSlider
5
  import argparse
6
- from SUPIR.util import HWC3, upscale_image, fix_resize, convert_dtype
7
  import numpy as np
8
  import torch
9
- from SUPIR.util import create_SUPIR_model, load_QF_ckpt
10
- from PIL import Image
11
  import einops
12
  import copy
13
  import math
@@ -15,6 +10,10 @@ import time
15
  import random
16
  import spaces
17
  import re
 
 
 
 
18
  from huggingface_hub import hf_hub_download
19
 
20
  hf_hub_download(repo_id="laion/CLIP-ViT-bigG-14-laion2B-39B-b160k", filename="open_clip_pytorch_model.bin", local_dir="laion_CLIP-ViT-bigG-14-laion2B-39B-b160k")
@@ -36,20 +35,11 @@ parser.add_argument("--encoder_tile_size", type=int, default=512)
36
  parser.add_argument("--decoder_tile_size", type=int, default=64)
37
  parser.add_argument("--load_8bit_llava", action='store_true', default=False)
38
  args = parser.parse_args()
39
- use_llava = not args.no_llava
40
 
41
  if torch.cuda.device_count() > 0:
42
- if torch.cuda.device_count() >= 2:
43
- SUPIR_device = 'cuda:0'
44
- LLaVA_device = 'cuda:1'
45
- elif torch.cuda.device_count() == 1:
46
- SUPIR_device = 'cuda:0'
47
- LLaVA_device = 'cuda:0'
48
- else:
49
- SUPIR_device = 'cpu'
50
- LLaVA_device = 'cpu'
51
 
52
- # load SUPIR
53
  model, default_setting = create_SUPIR_model(args.opt, SUPIR_sign='Q', load_default_setting=True)
54
  if args.loading_half_params:
55
  model = model.half()
@@ -59,7 +49,6 @@ if torch.cuda.device_count() > 0:
59
  model.first_stage_model.denoise_encoder_s1 = copy.deepcopy(model.first_stage_model.denoise_encoder)
60
  model.current_model = 'v0-Q'
61
  ckpt_Q, ckpt_F = load_QF_ckpt(args.opt)
62
- llava_agent = None
63
 
64
  def check_upload(input_image):
65
  if input_image is None:
@@ -349,10 +338,7 @@ def restore(
349
  LQ = LQ.round().clip(0, 255).astype(np.uint8)
350
  LQ = LQ / 255 * 2 - 1
351
  LQ = torch.tensor(LQ, dtype=torch.float32).permute(2, 0, 1).unsqueeze(0).to(SUPIR_device)[:, :3, :, :]
352
- if use_llava:
353
- captions = [prompt]
354
- else:
355
- captions = ['']
356
 
357
  model.ae_dtype = convert_dtype(ae_dtype)
358
  model.model.dtype = convert_dtype(diff_dtype)
@@ -390,7 +376,7 @@ def restore(
390
  print(information)
391
 
392
  # Only one image can be shown in the slider
393
- return [input_image] + [results[0]], gr.update(label="Downloadable results in *." + output_format + " format", format = output_format, value = results), gr.update(value = information, visible = True)
394
 
395
  def load_and_reset(param_setting):
396
  print('load_and_reset ==>>')
 
1
  import os
 
2
  import gradio as gr
 
3
  import argparse
 
4
  import numpy as np
5
  import torch
 
 
6
  import einops
7
  import copy
8
  import math
 
10
  import random
11
  import spaces
12
  import re
13
+
14
+ from gradio_imageslider import ImageSlider
15
+ from PIL import Image
16
+ from SUPIR.util import HWC3, upscale_image, fix_resize, convert_dtype, create_SUPIR_model, load_QF_ckpt
17
  from huggingface_hub import hf_hub_download
18
 
19
  hf_hub_download(repo_id="laion/CLIP-ViT-bigG-14-laion2B-39B-b160k", filename="open_clip_pytorch_model.bin", local_dir="laion_CLIP-ViT-bigG-14-laion2B-39B-b160k")
 
35
  parser.add_argument("--decoder_tile_size", type=int, default=64)
36
  parser.add_argument("--load_8bit_llava", action='store_true', default=False)
37
  args = parser.parse_args()
 
38
 
39
  if torch.cuda.device_count() > 0:
40
+ SUPIR_device = 'cuda:0'
 
 
 
 
 
 
 
 
41
 
42
+ # Load SUPIR
43
  model, default_setting = create_SUPIR_model(args.opt, SUPIR_sign='Q', load_default_setting=True)
44
  if args.loading_half_params:
45
  model = model.half()
 
49
  model.first_stage_model.denoise_encoder_s1 = copy.deepcopy(model.first_stage_model.denoise_encoder)
50
  model.current_model = 'v0-Q'
51
  ckpt_Q, ckpt_F = load_QF_ckpt(args.opt)
 
52
 
53
  def check_upload(input_image):
54
  if input_image is None:
 
338
  LQ = LQ.round().clip(0, 255).astype(np.uint8)
339
  LQ = LQ / 255 * 2 - 1
340
  LQ = torch.tensor(LQ, dtype=torch.float32).permute(2, 0, 1).unsqueeze(0).to(SUPIR_device)[:, :3, :, :]
341
+ captions = ['']
 
 
 
342
 
343
  model.ae_dtype = convert_dtype(ae_dtype)
344
  model.model.dtype = convert_dtype(diff_dtype)
 
376
  print(information)
377
 
378
  # Only one image can be shown in the slider
379
+ return [noisy_image] + [results[0]], gr.update(label="Downloadable results in *." + output_format + " format", format = output_format, value = results), gr.update(value = information, visible = True)
380
 
381
  def load_and_reset(param_setting):
382
  print('load_and_reset ==>>')