Fabrice-TIERCELIN
commited on
Commit
•
dbb0d36
1
Parent(s):
c6701f2
Upload llama_flash_attn_monkey_patch.py
Browse files
llava/llama_flash_attn_monkey_patch.py
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional, Tuple
|
2 |
+
import warnings
|
3 |
+
|
4 |
+
import torch
|
5 |
+
|
6 |
+
import transformers
|
7 |
+
from transformers.models.llama.modeling_llama import apply_rotary_pos_emb, repeat_kv
|
8 |
+
|
9 |
+
try:
|
10 |
+
from flash_attn.flash_attn_interface import flash_attn_unpadded_qkvpacked_func
|
11 |
+
except ImportError:
|
12 |
+
from flash_attn.flash_attn_interface import flash_attn_varlen_qkvpacked_func as flash_attn_unpadded_qkvpacked_func
|
13 |
+
from flash_attn.bert_padding import unpad_input, pad_input
|
14 |
+
|
15 |
+
|
16 |
+
def forward(
|
17 |
+
self,
|
18 |
+
hidden_states: torch.Tensor,
|
19 |
+
attention_mask: Optional[torch.Tensor] = None,
|
20 |
+
position_ids: Optional[torch.Tensor] = None,
|
21 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
22 |
+
output_attentions: bool = False,
|
23 |
+
use_cache: bool = False,
|
24 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
25 |
+
if output_attentions:
|
26 |
+
warnings.warn(
|
27 |
+
"Output attentions is not supported for patched `LlamaAttention`, returning `None` instead."
|
28 |
+
)
|
29 |
+
|
30 |
+
bsz, q_len, _ = hidden_states.size()
|
31 |
+
|
32 |
+
query_states = (
|
33 |
+
self.q_proj(hidden_states)
|
34 |
+
.view(bsz, q_len, self.num_heads, self.head_dim)
|
35 |
+
.transpose(1, 2)
|
36 |
+
)
|
37 |
+
key_states = (
|
38 |
+
self.k_proj(hidden_states)
|
39 |
+
.view(bsz, q_len, self.num_key_value_heads, self.head_dim)
|
40 |
+
.transpose(1, 2)
|
41 |
+
)
|
42 |
+
value_states = (
|
43 |
+
self.v_proj(hidden_states)
|
44 |
+
.view(bsz, q_len, self.num_key_value_heads, self.head_dim)
|
45 |
+
.transpose(1, 2)
|
46 |
+
) # shape: (b, num_heads, s, head_dim)
|
47 |
+
|
48 |
+
kv_seq_len = key_states.shape[-2]
|
49 |
+
if past_key_value is not None:
|
50 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
51 |
+
|
52 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
53 |
+
query_states, key_states = apply_rotary_pos_emb(
|
54 |
+
query_states, key_states, cos, sin, position_ids
|
55 |
+
)
|
56 |
+
|
57 |
+
if past_key_value is not None:
|
58 |
+
# reuse k, v
|
59 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
60 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
61 |
+
|
62 |
+
past_key_value = (key_states, value_states) if use_cache else None
|
63 |
+
|
64 |
+
# repeat k/v heads if n_kv_heads < n_heads
|
65 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
66 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
67 |
+
|
68 |
+
# Transform the data into the format required by flash attention
|
69 |
+
qkv = torch.stack([query_states, key_states, value_states], dim=2)
|
70 |
+
qkv = qkv.transpose(1, 3) # shape: [b, s, 3, num_heads, head_dim]
|
71 |
+
key_padding_mask = attention_mask
|
72 |
+
|
73 |
+
if key_padding_mask is None:
|
74 |
+
qkv = qkv.reshape(-1, 3, self.num_heads, self.head_dim)
|
75 |
+
cu_q_lens = torch.arange(
|
76 |
+
0, (bsz + 1) * q_len, step=q_len, dtype=torch.int32, device=qkv.device
|
77 |
+
)
|
78 |
+
max_s = q_len
|
79 |
+
output = flash_attn_unpadded_qkvpacked_func(
|
80 |
+
qkv, cu_q_lens, max_s, 0.0, softmax_scale=None, causal=True
|
81 |
+
)
|
82 |
+
output = output.view(bsz, q_len, -1)
|
83 |
+
else:
|
84 |
+
qkv = qkv.reshape(bsz, q_len, -1)
|
85 |
+
qkv, indices, cu_q_lens, max_s = unpad_input(qkv, key_padding_mask)
|
86 |
+
qkv = qkv.view(-1, 3, self.num_heads, self.head_dim)
|
87 |
+
output_unpad = flash_attn_unpadded_qkvpacked_func(
|
88 |
+
qkv, cu_q_lens, max_s, 0.0, softmax_scale=None, causal=True
|
89 |
+
)
|
90 |
+
output_unpad = output_unpad.reshape(-1, self.num_heads * self.head_dim)
|
91 |
+
output = pad_input(output_unpad, indices, bsz, q_len)
|
92 |
+
|
93 |
+
return self.o_proj(output), None, past_key_value
|
94 |
+
|
95 |
+
|
96 |
+
# Disable the transformation of the attention mask in LlamaModel as the flash attention
|
97 |
+
# requires the attention mask to be the same as the key_padding_mask
|
98 |
+
def _prepare_decoder_attention_mask(
|
99 |
+
self, attention_mask, input_shape, inputs_embeds, past_key_values_length
|
100 |
+
):
|
101 |
+
# [bsz, seq_len]
|
102 |
+
return attention_mask
|
103 |
+
|
104 |
+
|
105 |
+
def replace_llama_attn_with_flash_attn():
|
106 |
+
cuda_major, cuda_minor = torch.cuda.get_device_capability()
|
107 |
+
if cuda_major < 8:
|
108 |
+
warnings.warn(
|
109 |
+
"Flash attention is only supported on A100 or H100 GPU during training due to head dim > 64 backward."
|
110 |
+
"ref: https://github.com/HazyResearch/flash-attention/issues/190#issuecomment-1523359593"
|
111 |
+
)
|
112 |
+
transformers.models.llama.modeling_llama.LlamaModel._prepare_decoder_attention_mask = (
|
113 |
+
_prepare_decoder_attention_mask
|
114 |
+
)
|
115 |
+
transformers.models.llama.modeling_llama.LlamaAttention.forward = forward
|