Fabrice-TIERCELIN
commited on
Commit
•
ebaa403
1
Parent(s):
6067d3e
Upload adapt_tokenizer.py
Browse files- llava/adapt_tokenizer.py +41 -0
llava/adapt_tokenizer.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Union
|
2 |
+
from transformers import AutoTokenizer, PreTrainedTokenizer, PreTrainedTokenizerFast
|
3 |
+
Tokenizer = Union[PreTrainedTokenizer, PreTrainedTokenizerFast]
|
4 |
+
NUM_SENTINEL_TOKENS: int = 100
|
5 |
+
|
6 |
+
def adapt_tokenizer_for_denoising(tokenizer: Tokenizer):
|
7 |
+
"""Adds sentinel tokens and padding token (if missing).
|
8 |
+
|
9 |
+
Expands the tokenizer vocabulary to include sentinel tokens
|
10 |
+
used in mixture-of-denoiser tasks as well as a padding token.
|
11 |
+
|
12 |
+
All added tokens are added as special tokens. No tokens are
|
13 |
+
added if sentinel tokens and padding token already exist.
|
14 |
+
"""
|
15 |
+
sentinels_to_add = [f'<extra_id_{i}>' for i in range(NUM_SENTINEL_TOKENS)]
|
16 |
+
tokenizer.add_tokens(sentinels_to_add, special_tokens=True)
|
17 |
+
if tokenizer.pad_token is None:
|
18 |
+
tokenizer.add_tokens('<pad>', special_tokens=True)
|
19 |
+
tokenizer.pad_token = '<pad>'
|
20 |
+
assert tokenizer.pad_token_id is not None
|
21 |
+
sentinels = ''.join([f'<extra_id_{i}>' for i in range(NUM_SENTINEL_TOKENS)])
|
22 |
+
_sentinel_token_ids = tokenizer(sentinels, add_special_tokens=False).input_ids
|
23 |
+
tokenizer.sentinel_token_ids = _sentinel_token_ids
|
24 |
+
|
25 |
+
class AutoTokenizerForMOD(AutoTokenizer):
|
26 |
+
"""AutoTokenizer + Adaptation for MOD.
|
27 |
+
|
28 |
+
A simple wrapper around AutoTokenizer to make instantiating
|
29 |
+
an MOD-adapted tokenizer a bit easier.
|
30 |
+
|
31 |
+
MOD-adapted tokenizers have sentinel tokens (e.g., <extra_id_0>),
|
32 |
+
a padding token, and a property to get the token ids of the
|
33 |
+
sentinel tokens.
|
34 |
+
"""
|
35 |
+
|
36 |
+
@classmethod
|
37 |
+
def from_pretrained(cls, *args, **kwargs):
|
38 |
+
"""See `AutoTokenizer.from_pretrained` docstring."""
|
39 |
+
tokenizer = super().from_pretrained(*args, **kwargs)
|
40 |
+
adapt_tokenizer_for_denoising(tokenizer)
|
41 |
+
return tokenizer
|