weepakistan's picture
Upload 38 files
25d156c verified
raw
history blame
2.88 kB
from typing import Any, List, Callable
import cv2
import threading
import gfpgan
import roop.globals
import roop.processors.frame.core
from roop.core import update_status
from roop.face_analyser import get_one_face
from roop.typing import Frame, Face
from roop.utilities import conditional_download, resolve_relative_path, is_image, is_video
import torch
FACE_ENHANCER = None
THREAD_SEMAPHORE = threading.Semaphore()
THREAD_LOCK = threading.Lock()
NAME = 'ROOP.FACE-ENHANCER'
frame_name = 'face_enhancer'
if torch.cuda.is_available():
device='cuda'
else:
device='cpu'
def get_face_enhancer() -> Any:
global FACE_ENHANCER
with THREAD_LOCK:
if FACE_ENHANCER is None:
model_path = resolve_relative_path('../models/GFPGANv1.4.pth')
# todo: set models path https://github.com/TencentARC/GFPGAN/issues/399
FACE_ENHANCER = gfpgan.GFPGANer(model_path=model_path, upscale=1,device=device) # type: ignore[attr-defined]
return FACE_ENHANCER
def pre_check() -> bool:
download_directory_path = resolve_relative_path('../models')
# conditional_download(download_directory_path, ['https://huggingface.co/henryruhs/roop/resolve/main/GFPGANv1.4.pth'])
conditional_download(download_directory_path, ['https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth'])
return True
def pre_start() -> bool:
if not is_image(roop.globals.target_path) and not is_video(roop.globals.target_path):
update_status('Select an image or video for target path.', NAME)
return False
return True
def post_process() -> None:
global FACE_ENHANCER
FACE_ENHANCER = None
def enhance_face(temp_frame: Frame) -> Frame:
with THREAD_SEMAPHORE:
_, _, temp_frame = get_face_enhancer().enhance(
temp_frame,
paste_back=True
)
return temp_frame
def process_frame(source_face: Face, temp_frame: Frame) -> Frame:
target_face = get_one_face(temp_frame)
if target_face:
temp_frame = enhance_face(temp_frame)
return temp_frame
def process_frames(source_path: str, temp_frame_paths: List[str], update: Callable[[], None]) -> None:
for temp_frame_path in temp_frame_paths:
temp_frame = cv2.imread(temp_frame_path)
result = process_frame(None, temp_frame)
cv2.imwrite(temp_frame_path, result)
if update:
update()
def process_image(source_path: str, target_path: str, output_path: str) -> None:
target_frame = cv2.imread(target_path)
result = process_frame(None, target_frame)
cv2.imwrite(output_path, result)
def process_video(source_path: str, temp_frame_paths: List[str]) -> None:
roop.processors.frame.core.process_video(None, temp_frame_paths, process_frames)