Spaces:
Runtime error
Runtime error
Upload app.py with huggingface_hub
Browse files
app.py
ADDED
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import fastai
|
3 |
+
import fastai.vision
|
4 |
+
import PIL
|
5 |
+
import gradio
|
6 |
+
import matplotlib
|
7 |
+
import numpy
|
8 |
+
import pandas
|
9 |
+
from fastai.vision.all import *
|
10 |
+
#
|
11 |
+
# create class
|
12 |
+
class ADA_SKIN(object):
|
13 |
+
#
|
14 |
+
# initialize the object
|
15 |
+
def __init__(self, name="Wallaby",verbose=True,*args, **kwargs):
|
16 |
+
super(ADA_SKIN, self).__init__(*args, **kwargs)
|
17 |
+
self.author = "Duc Haba"
|
18 |
+
self.name = name
|
19 |
+
if (verbose):
|
20 |
+
self._ph()
|
21 |
+
self._pp("Hello from class", str(self.__class__) + " Class: " + str(self.__class__.__name__))
|
22 |
+
self._pp("Code name", self.name)
|
23 |
+
self._pp("Author is", self.author)
|
24 |
+
self._ph()
|
25 |
+
#
|
26 |
+
self.article = '<div><h3>Citation:</h3><ul><li>'
|
27 |
+
self.article += 'Author/Dev: Duc Haba, 2022.</li>'
|
28 |
+
self.article += '<li><a target="_blank" href="https://linkedin.com/in/duchaba">https://linkedin.com/in/duchaba</a></li>'
|
29 |
+
self.article += '<li>The training dataset the combination of three datasets</li>'
|
30 |
+
self.article += '<ol>'
|
31 |
+
self.article += '<li>https://www.kaggle.com/datasets/surajghuwalewala/ham1000-segmentation-and-classification</li>'
|
32 |
+
self.article += '<li>https://www.kaggle.com/datasets/andrewmvd/isic-2019</li>'
|
33 |
+
self.article += '<li>https://www.kaggle.com/datasets/jnegrini/skin-lesions-act-keratosis-and-melanoma</li>'
|
34 |
+
self.article += '</ol></ul>'
|
35 |
+
self.article += '<h3>Articles:</h3><ul>'
|
36 |
+
self.article += '<li><a target="_blank" href="https://www.linkedin.com/pulse/120-dog-breeds-hugging-face-duc-haba/">'
|
37 |
+
self.article += '"Skin Cancer Diagnose"</a> on LinkedIn, on <a target="_blank" href='
|
38 |
+
self.article += '"https://duchaba.medium.com/120-dog-breeds-on-hugging-face-75288c7952d6">Medium.</a></li>'
|
39 |
+
self.article += '</ul>'
|
40 |
+
self.article += '<h3>Example Images: (left to right)</h3><ol>'
|
41 |
+
self.article += '<li>Bowen Disease (AKIEC)</li>'
|
42 |
+
self.article += '<li>Basal Cell Carcinoma</li>'
|
43 |
+
self.article += '<li>Benign Keratosis-like Lesions</li>'
|
44 |
+
self.article += '<li>Dermatofibroma</li>'
|
45 |
+
self.article += '<li>Melanoma</li>'
|
46 |
+
self.article += '<li>Melanocytic Nevi</li>'
|
47 |
+
self.article += '<li>Squamous Cell Carcinoma</li>'
|
48 |
+
self.article += '<li>Vascular Lesions</li>'
|
49 |
+
self.article += '<li>Benign</li>'
|
50 |
+
self.article += '<li>Benign 2</li></ol>'
|
51 |
+
self.article += '<h3>Train Result:</h3><ul>'
|
52 |
+
self.article += '<li>Skin Cancer Classificaiton: F1-Score, Precision, and Recall Graph</li>'
|
53 |
+
self.article += '<li><img src="file/ada_f1_skin.png" alt="F1-Score, Precision, and Recall Graph" width="640"</li>'
|
54 |
+
self.article += '<li>Skin Cancer Malignant or Benign: F1-Score, Precision, and Recall Graph</li>'
|
55 |
+
self.article += '<li><img src="file/ada_f1_skin_be.png" alt="F1-Score, Precision, and Recall Graph" width="640"</li>'
|
56 |
+
self.article += '</ul>'
|
57 |
+
self.article += '<h3>Dev Stack:</h3><ul>'
|
58 |
+
self.article += '<li>Jupyter Notebook, Python, Pandas, Matplotlib, Sklearn</li>'
|
59 |
+
self.article += '<li>Fast.ai, PyTorch</li>'
|
60 |
+
self.article += '</ul>'
|
61 |
+
self.article += '<h3>Licenses:</h3><ul>'
|
62 |
+
self.article += '<li>GNU GPL 3.0, https://www.gnu.org/licenses/gpl-3.0.txt</li>'
|
63 |
+
self.article += '</ul></div>'
|
64 |
+
self.examples = ['akiec1.jpg','bcc1.jpg','bkl1.jpg','df1.jpg','mel1.jpg',
|
65 |
+
'nevi1.jpg','scc1.jpg','vl1.jpg','benign1.jpg','benign3.jpg']
|
66 |
+
self.title = "Skin Cancer Diagnose"
|
67 |
+
return
|
68 |
+
#
|
69 |
+
# pretty print output name-value line
|
70 |
+
def _pp(self, a, b):
|
71 |
+
print("%34s : %s" % (str(a), str(b)))
|
72 |
+
return
|
73 |
+
#
|
74 |
+
# pretty print the header or footer lines
|
75 |
+
def _ph(self):
|
76 |
+
print("-" * 34, ":", "-" * 34)
|
77 |
+
return
|
78 |
+
#
|
79 |
+
def _predict_image(self,img,cat):
|
80 |
+
pred,idx,probs = learn.predict(img)
|
81 |
+
return dict(zip(cat, map(float,probs)))
|
82 |
+
#
|
83 |
+
def _predict_image2(self,img,cat):
|
84 |
+
pred,idx,probs = learn2.predict(img)
|
85 |
+
return dict(zip(cat, map(float,probs)))
|
86 |
+
#
|
87 |
+
def _draw_pred(self,df_pred, df2):
|
88 |
+
canvas, pic = matplotlib.pyplot.subplots(1,2, figsize=(12,6))
|
89 |
+
ti = df_pred["breeds"].head(3).values
|
90 |
+
ti2 = df2["breeds"].head(2).values
|
91 |
+
# special case
|
92 |
+
#if (matplotlib.__version__) >= "3.5.2":
|
93 |
+
try:
|
94 |
+
df_pred["pred"].head(3).plot(ax=pic[0],kind="pie",
|
95 |
+
cmap="Set2",labels=ti, explode=(0.02,0,0),
|
96 |
+
wedgeprops=dict(width=.4),
|
97 |
+
normalize=False)
|
98 |
+
df2["pred"].head(2).plot(ax=pic[1],kind="pie",
|
99 |
+
colors=["cornflowerblue","darkorange"],labels=ti2, explode=(0.02,0),
|
100 |
+
wedgeprops=dict(width=.4),
|
101 |
+
normalize=False)
|
102 |
+
except:
|
103 |
+
df_pred["pred"].head(3).plot(ax=pic[0],kind="pie",
|
104 |
+
cmap="Set2",labels=ti, explode=(0.02,0,0),
|
105 |
+
wedgeprops=dict(width=.4))
|
106 |
+
df2["pred"].head(2).plot(ax=pic[1],kind="pie",
|
107 |
+
colors=["cornflowerblue","darkorange"],labels=ti2, explode=(0.02,0),
|
108 |
+
wedgeprops=dict(width=.4))
|
109 |
+
t = str(ti[0]) + ": " + str(numpy.round(df_pred.head(1).pred.values[0]*100, 2)) + "% Certainty"
|
110 |
+
pic[0].set_title(t,fontsize=14.0, fontweight="bold")
|
111 |
+
pic[0].axis('off')
|
112 |
+
pic[0].legend(ti, loc="lower right",title="Skin Cancers: Top 3")
|
113 |
+
#
|
114 |
+
k0 = numpy.round(df2.head(1).pred.values[0]*100, 2)
|
115 |
+
k1 = numpy.round(df2.tail(1).pred.values[0]*100, 2)
|
116 |
+
if (k0 > k1):
|
117 |
+
t2 = str(ti2[0]) + ": " + str(k0) + "% Certainty"
|
118 |
+
else:
|
119 |
+
t2 = str(ti2[1]) + ": " + str(k1) + "% Certainty"
|
120 |
+
pic[1].set_title(t2,fontsize=14.0, fontweight="bold")
|
121 |
+
pic[1].axis('off')
|
122 |
+
pic[1].legend(ti2, loc="lower right",title="Skin Cancers:")
|
123 |
+
#
|
124 |
+
# # draw circle
|
125 |
+
# centre_circle = matplotlib.pyplot.Circle((0, 0), 0.6, fc='white')
|
126 |
+
# p = matplotlib.pyplot.gcf()
|
127 |
+
# # Adding Circle in Pie chart
|
128 |
+
# p.gca().add_artist(centre_circle)
|
129 |
+
#
|
130 |
+
#p=plt.gcf()
|
131 |
+
#p.gca().add_artist(my_circle)
|
132 |
+
#
|
133 |
+
canvas.tight_layout()
|
134 |
+
return canvas
|
135 |
+
#
|
136 |
+
def predict_donut(self,img):
|
137 |
+
d = self._predict_image(img,self.categories)
|
138 |
+
df = pandas.DataFrame(d, index=[0])
|
139 |
+
df = df.transpose().reset_index()
|
140 |
+
df.columns = ["breeds", "pred"]
|
141 |
+
df.sort_values("pred", inplace=True,ascending=False, ignore_index=True)
|
142 |
+
#
|
143 |
+
d2 = self._predict_image2(img,self.categories2)
|
144 |
+
df2 = pandas.DataFrame(d2, index=[0])
|
145 |
+
df2 = df2.transpose().reset_index()
|
146 |
+
df2.columns = ["breeds", "pred"]
|
147 |
+
#df2.sort_values("pred", inplace=True,ascending=False, ignore_index=True)
|
148 |
+
#
|
149 |
+
canvas = self._draw_pred(df,df2)
|
150 |
+
return canvas
|
151 |
+
#
|
152 |
+
maxi = ADA_SKIN(verbose=False)
|
153 |
+
#
|
154 |
+
learn = fastai.learner.load_learner('ada_learn_skin_norm2000.pkl')
|
155 |
+
learn2 = fastai.learner.load_learner('ada_learn_malben.pkl')
|
156 |
+
maxi.categories = learn.dls.vocab
|
157 |
+
maxi.categories2 = learn2.dls.vocab
|
158 |
+
hf_image = gradio.inputs.Image(shape=(192, 192))
|
159 |
+
hf_label = gradio.outputs.Label()
|
160 |
+
intf = gradio.Interface(fn=maxi.predict_donut,
|
161 |
+
inputs=hf_image,
|
162 |
+
outputs=["plot"],
|
163 |
+
examples=maxi.examples,
|
164 |
+
title=maxi.title,
|
165 |
+
live=True,
|
166 |
+
article=maxi.article)
|
167 |
+
intf.launch(inline=False,share=True)
|