omniscience / app.py
dwb2023's picture
Update app.py
96e3a47 verified
raw
history blame
11.9 kB
import os
import logging
import sys
from config import WEAVE_PROJECT, WANDB_API_KEY
import weave
from model_utils import get_model_summary, install_flash_attn
# Install required package
install_flash_attn()
weave.init(WEAVE_PROJECT)
# Function to get logging level from environment variable
def get_logging_level(default_level=logging.INFO): # Default to DEBUG for detailed logs
log_level_str = os.getenv('VISION_AGENT_LOG_LEVEL', '').upper()
if log_level_str == 'DEBUG':
return logging.DEBUG
elif log_level_str == 'INFO':
return logging.INFO
elif log_level_str == 'WARNING':
return logging.WARNING
elif log_level_str == 'ERROR':
return logging.ERROR
elif log_level_str == 'CRITICAL':
return logging.CRITICAL
else:
return default_level
# Initialize logger
logging.basicConfig(level=get_logging_level(), format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger('vision_agent')
from huggingface_hub import login
import time
import gradio as gr
from typing import *
from pillow_heif import register_heif_opener
register_heif_opener()
import vision_agent as va
from vision_agent.tools import register_tool, load_image, owl_v2, grounding_dino, florencev2_object_detection, overlay_bounding_boxes, save_image
# Perform login using the token
hf_token = os.getenv("HF_TOKEN")
login(token=hf_token, add_to_git_credential=True)
import numpy as np
from PIL import Image
@weave.op()
def detect_object_owlv2(image, seg_input, debug: bool = True):
"""
Detects a brain tumor in the given image and returns the annotated image.
Parameters:
image: The input image (as numpy array provided by Gradio).
seg_input: The segmentation input (not used in this function, but required for Gradio).
debug (bool): Flag to enable logging for debugging purposes.
Returns:
tuple: (numpy array of image, list of (label, (x1, y1, x2, y2)) tuples)
"""
# Step 2: Detect brain tumor using owl_v2
prompt = seg_input
detections = owl_v2(prompt, image)
# Step 3: Overlay bounding boxes on the image
image_with_bboxes = overlay_bounding_boxes(image, detections)
# Prepare annotations for AnnotatedImage output
annotations = []
for detection in detections:
label = detection['label']
score = detection['score']
bbox = detection['bbox']
x1, y1, x2, y2 = bbox
# Convert normalized coordinates to pixel coordinates
height, width = image.shape[:2]
x1, y1, x2, y2 = int(x1*width), int(y1*height), int(x2*width), int(y2*height)
annotations.append(((x1, y1, x2, y2), f"{label} {score:.2f}"))
# Convert image to numpy array if it's not already
if isinstance(image_with_bboxes, Image.Image):
image_with_bboxes = np.array(image_with_bboxes)
return (image_with_bboxes, annotations)
@weave.op()
def detect_object_dino(image, seg_input, debug: bool = True):
"""
Detects a brain tumor in the given image and returns the annotated image.
Parameters:
image: The input image (as numpy array provided by Gradio).
seg_input: The segmentation input (not used in this function, but required for Gradio).
debug (bool): Flag to enable logging for debugging purposes.
Returns:
tuple: (numpy array of image, list of (label, (x1, y1, x2, y2)) tuples)
"""
# Step 2: Detect brain tumor using grounding_dino
prompt = seg_input
detections = grounding_dino(prompt, image)
# Step 3: Overlay bounding boxes on the image
image_with_bboxes = overlay_bounding_boxes(image, detections)
# Prepare annotations for AnnotatedImage output
annotations = []
for detection in detections:
label = detection['label']
score = detection['score']
bbox = detection['bbox']
x1, y1, x2, y2 = bbox
# Convert normalized coordinates to pixel coordinates
height, width = image.shape[:2]
x1, y1, x2, y2 = int(x1*width), int(y1*height), int(x2*width), int(y2*height)
annotations.append(((x1, y1, x2, y2), f"{label} {score:.2f}"))
# Convert image to numpy array if it's not already
if isinstance(image_with_bboxes, Image.Image):
image_with_bboxes = np.array(image_with_bboxes)
return (image_with_bboxes, annotations)
@weave.op()
def detect_object_florence2(image, seg_input, debug: bool = True):
"""
Detects a brain tumor in the given image and returns the annotated image.
Parameters:
image: The input image (as numpy array provided by Gradio).
seg_input: The segmentation input (not used in this function, but required for Gradio).
debug (bool): Flag to enable logging for debugging purposes.
Returns:
tuple: (numpy array of image, list of (label, (x1, y1, x2, y2)) tuples)
"""
# Step 2: Detect brain tumor using florencev2 - NO PROMPT
detections = florencev2_object_detection(image)
# Step 3: Overlay bounding boxes on the image
image_with_bboxes = overlay_bounding_boxes(image, detections)
# Prepare annotations for AnnotatedImage output
annotations = []
for detection in detections:
label = detection['label']
score = detection['score']
bbox = detection['bbox']
x1, y1, x2, y2 = bbox
# Convert normalized coordinates to pixel coordinates
height, width = image.shape[:2]
x1, y1, x2, y2 = int(x1*width), int(y1*height), int(x2*width), int(y2*height)
annotations.append(((x1, y1, x2, y2), f"{label} {score:.2f}"))
# Convert image to numpy array if it's not already
if isinstance(image_with_bboxes, Image.Image):
image_with_bboxes = np.array(image_with_bboxes)
return (image_with_bboxes, annotations)
def handle_model_summary(model_name):
model_summary, error_message = get_model_summary(model_name)
if error_message:
return error_message, ""
return model_summary, ""
INTRO_TEXT="# 🔬🧠 OmniScience -- Agentic Imaging Analysis 🤖🧫"
with gr.Blocks(theme="sudeepshouche/minimalist") as demo:
gr.Markdown(INTRO_TEXT)
with gr.Tab("Object Detection - Owl V2"):
with gr.Row():
with gr.Column():
image = gr.Image(type="numpy")
seg_input = gr.Text(label="Entities to Segment/Detect")
with gr.Column():
annotated_image = gr.AnnotatedImage(label="Output")
seg_btn = gr.Button("Submit")
examples = [
["./examples/BloodImage_00099_jpg.rf.0a65e56401cdd71253e7bc04917c3558.jpg", "detect blood cell"],
["./examples/15_242_212_25_25_jpg.rf.f6bbadf4260dd2c1f5b4ace1b09b0a1b.jpg", "detect liver disease"],
["./examples/194_jpg.rf.3e3dd592d034bb5ee27a978553819f42.jpg", "detect brain tumor"],
["./examples/239_jpg.rf.3dcc0799277fb78a2ab21db7761ccaeb.jpg", "detect brain tumor"],
["./examples/2871_jpg.rf.3b6eadfbb369abc2b3bcb52b406b74f2.jpg", "detect brain tumor"],
["./examples/2921_jpg.rf.3b952f91f27a6248091e7601c22323ad.jpg", "detect brain tumor"],
]
gr.Examples(
examples=examples,
inputs=[image, seg_input],
)
seg_inputs = [
image,
seg_input
]
seg_outputs = [
annotated_image
]
seg_btn.click(
fn=detect_object_owlv2,
inputs=seg_inputs,
outputs=seg_outputs,
)
with gr.Tab("Object Detection - DINO"):
with gr.Row():
with gr.Column():
image = gr.Image(type="numpy")
seg_input = gr.Text(label="Entities to Segment/Detect")
with gr.Column():
annotated_image = gr.AnnotatedImage(label="Output")
seg_btn = gr.Button("Submit")
examples = [
["./examples/BloodImage_00099_jpg.rf.0a65e56401cdd71253e7bc04917c3558.jpg", "detect blood cell"],
["./examples/15_242_212_25_25_jpg.rf.f6bbadf4260dd2c1f5b4ace1b09b0a1b.jpg", "detect liver disease"],
["./examples/194_jpg.rf.3e3dd592d034bb5ee27a978553819f42.jpg", "detect brain tumor"],
["./examples/239_jpg.rf.3dcc0799277fb78a2ab21db7761ccaeb.jpg", "detect brain tumor"],
["./examples/2871_jpg.rf.3b6eadfbb369abc2b3bcb52b406b74f2.jpg", "detect brain tumor"],
["./examples/2921_jpg.rf.3b952f91f27a6248091e7601c22323ad.jpg", "detect brain tumor"],
]
gr.Examples(
examples=examples,
inputs=[image, seg_input],
)
seg_inputs = [
image,
seg_input
]
seg_outputs = [
annotated_image
]
seg_btn.click(
fn=detect_object_dino,
inputs=seg_inputs,
outputs=seg_outputs,
)
with gr.Tab("Object Detection - Florence2"):
with gr.Row():
with gr.Column():
image = gr.Image(type="numpy")
seg_input = gr.Text(label="Entities to Segment/Detect")
with gr.Column():
annotated_image = gr.AnnotatedImage(label="Output")
seg_btn = gr.Button("Submit")
examples = [
["./examples/BloodImage_00099_jpg.rf.0a65e56401cdd71253e7bc04917c3558.jpg", "<OD>"],
["./examples/15_242_212_25_25_jpg.rf.f6bbadf4260dd2c1f5b4ace1b09b0a1b.jpg", "<OD>"],
["./examples/194_jpg.rf.3e3dd592d034bb5ee27a978553819f42.jpg", "<OD>"],
["./examples/239_jpg.rf.3dcc0799277fb78a2ab21db7761ccaeb.jpg", "<OD>"],
["./examples/2871_jpg.rf.3b6eadfbb369abc2b3bcb52b406b74f2.jpg", "<OD>"],
["./examples/2921_jpg.rf.3b952f91f27a6248091e7601c22323ad.jpg", "<OD>"],
]
gr.Examples(
examples=examples,
inputs=[image, seg_input],
)
seg_inputs = [
image,
seg_input
]
seg_outputs = [
annotated_image
]
seg_btn.click(
fn=detect_object_florence2,
inputs=seg_inputs,
outputs=seg_outputs,
)
with gr.Tab("Model Explorer"):
gr.Markdown("## Retrieve and Display Model Architecture")
model_name_input = gr.Textbox(label="Model Name", placeholder="Enter the model name to retrieve its architecture...")
vision_examples = gr.Examples(
examples=[
["facebook/sam-vit-huge"],
["google/owlv2-base-patch16-ensemble"],
["IDEA-Research/grounding-dino-base"],
["microsoft/Florence-2-large-ft"],
["google/paligemma-3b-mix-224"],
["llava-hf/llava-v1.6-mistral-7b-hf"],
["vikhyatk/moondream2"],
["microsoft/Phi-3-vision-128k-instruct"],
["HuggingFaceM4/idefics2-8b-chatty"]
],
inputs=model_name_input
)
model_submit_button = gr.Button("Submit")
model_output = gr.Textbox(label="Model Architecture", lines=20, placeholder="Model architecture will appear here...", show_copy_button=True)
error_output = gr.Textbox(label="Error", lines=10, placeholder="Exceptions will appear here...", show_copy_button=True)
model_submit_button.click(fn=handle_model_summary, inputs=model_name_input, outputs=[model_output, error_output])
if __name__ == "__main__":
demo.queue(max_size=10).launch(debug=True)