Spaces:
Running
Running
first commit
Browse files- app.py +50 -366
- examples/1385_jpg.rf.3c67cb92e2922dba0e6dba86f69df40b.jpg +0 -0
- examples/1491_jpg.rf.3c658e83538de0fa5a3f4e13d7d85f12.jpg +0 -0
- examples/1550_jpg.rf.3d067be9580ec32dbee5a89c675d8459.jpg +0 -0
- examples/194_jpg.rf.3e3dd592d034bb5ee27a978553819f42.jpg +0 -0
- examples/2256_jpg.rf.3afd7903eaf3f3c5aa8da4bbb928bc19.jpg +0 -0
- examples/239_jpg.rf.3dcc0799277fb78a2ab21db7761ccaeb.jpg +0 -0
- examples/2777_jpg.rf.3b60ea7f7e70552e70e41528052018bd.jpg +0 -0
- examples/2860_jpg.rf.3bb87fa4f938af5abfb1e17676ec1dad.jpg +0 -0
- examples/2871_jpg.rf.3b6eadfbb369abc2b3bcb52b406b74f2.jpg +0 -0
- examples/2921_jpg.rf.3b952f91f27a6248091e7601c22323ad.jpg +0 -0
- examples/_annotations.coco.json +388 -0
- examples/tumor1.json +7 -0
- examples/tumor10.json +7 -0
- examples/tumor2.json +7 -0
- examples/tumor3.json +7 -0
- examples/tumor4.json +7 -0
- examples/tumor5.json +7 -0
- examples/tumor6.json +7 -0
- examples/tumor7.json +7 -0
- examples/tumor8.json +7 -0
- examples/tumor9.json +7 -0
- requirements.txt +1 -5
- vae-oid.npz +0 -3
app.py
CHANGED
@@ -1,37 +1,12 @@
|
|
1 |
-
"""
|
2 |
-
CellVision AI - Intelligent Cell Imaging Analysis
|
3 |
-
|
4 |
-
This module provides a Gradio web application for performing intelligent cell imaging analysis
|
5 |
-
using the PaliGemma model from Google. The app allows users to segment or detect cells in images
|
6 |
-
and generate descriptive text based on the input image and prompt.
|
7 |
-
|
8 |
-
Dependencies:
|
9 |
-
- gradio
|
10 |
-
- transformers
|
11 |
-
- torch
|
12 |
-
- jax
|
13 |
-
- flax
|
14 |
-
- spaces
|
15 |
-
- PIL
|
16 |
-
- numpy
|
17 |
-
- huggingface_hub
|
18 |
-
|
19 |
-
"""
|
20 |
-
|
21 |
-
import os
|
22 |
-
import functools
|
23 |
-
import re
|
24 |
-
|
25 |
-
import PIL.Image
|
26 |
import gradio as gr
|
27 |
-
|
28 |
-
import
|
29 |
-
|
30 |
-
import
|
31 |
-
|
|
|
|
|
32 |
|
33 |
-
from transformers import PaliGemmaForConditionalGeneration, PaliGemmaProcessor
|
34 |
-
from peft import PeftConfig, PeftModel
|
35 |
from huggingface_hub import login
|
36 |
import spaces
|
37 |
|
@@ -39,278 +14,38 @@ import spaces
|
|
39 |
hf_token = os.getenv("HF_TOKEN")
|
40 |
login(token=hf_token, add_to_git_credential=True)
|
41 |
|
42 |
-
|
43 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
44 |
-
|
45 |
-
model_id = "google/paligemma-3b-pt-224"
|
46 |
-
adapter_model_id = "dwb2023/paligemma-tumor-detection-ft"
|
47 |
-
|
48 |
-
# model_id = "google/paligemma-3b-ft-refcoco-seg-224"
|
49 |
-
model = PaliGemmaForConditionalGeneration.from_pretrained(model_id).eval().to(device)
|
50 |
-
|
51 |
-
model = PeftModel.from_pretrained(model, adapter_model_id).to(device)
|
52 |
-
model = model.merge_and_unload()
|
53 |
-
model.save_pretrained("merged_adapters")
|
54 |
-
|
55 |
-
processor = PaliGemmaProcessor.from_pretrained(model_id)
|
56 |
-
|
57 |
-
@spaces.GPU(duration=120)
|
58 |
-
def infer(
|
59 |
-
image: PIL.Image.Image,
|
60 |
-
text: str,
|
61 |
-
max_new_tokens: int
|
62 |
-
) -> str:
|
63 |
-
"""
|
64 |
-
Perform inference using the PaliGemma model.
|
65 |
-
|
66 |
-
Args:
|
67 |
-
image (PIL.Image.Image): Input image.
|
68 |
-
text (str): Input text prompt.
|
69 |
-
max_new_tokens (int): Maximum number of new tokens to generate.
|
70 |
-
|
71 |
-
Returns:
|
72 |
-
str: Generated text based on the input image and prompt.
|
73 |
-
"""
|
74 |
-
inputs = processor(text=text, images=image, return_tensors="pt").to(device)
|
75 |
-
with torch.inference_mode():
|
76 |
-
generated_ids = model.generate(
|
77 |
-
**inputs,
|
78 |
-
max_new_tokens=max_new_tokens,
|
79 |
-
do_sample=False
|
80 |
-
)
|
81 |
-
result = processor.batch_decode(generated_ids, skip_special_tokens=True)
|
82 |
-
return result[0][len(text):].lstrip("\n")
|
83 |
-
|
84 |
-
def parse_segmentation(input_image, input_text):
|
85 |
-
"""
|
86 |
-
Parse segmentation output tokens into masks and bounding boxes.
|
87 |
-
|
88 |
-
Args:
|
89 |
-
input_image (PIL.Image.Image): Input image.
|
90 |
-
input_text (str): Input text specifying entities to segment or detect.
|
91 |
-
|
92 |
-
Returns:
|
93 |
-
tuple: A tuple containing the annotated image and a boolean indicating if annotations are present.
|
94 |
-
"""
|
95 |
-
out = infer(input_image, input_text, max_new_tokens=100)
|
96 |
-
objs = extract_objs(out.lstrip("\n"), input_image.size[0], input_image.size[1], unique_labels=True)
|
97 |
-
labels = set(obj.get('name') for obj in objs if obj.get('name'))
|
98 |
-
color_map = {l: COLORS[i % len(COLORS)] for i, l in enumerate(labels)}
|
99 |
-
highlighted_text = [(obj['content'], obj.get('name')) for obj in objs]
|
100 |
-
annotated_img = (
|
101 |
-
input_image,
|
102 |
-
[
|
103 |
-
(
|
104 |
-
obj['mask'] if obj.get('mask') is not None else obj['xyxy'],
|
105 |
-
obj['name'] or '',
|
106 |
-
)
|
107 |
-
for obj in objs
|
108 |
-
if 'mask' in obj or 'xyxy' in obj
|
109 |
-
],
|
110 |
-
)
|
111 |
-
has_annotations = bool(annotated_img[1])
|
112 |
-
return annotated_img
|
113 |
-
|
114 |
-
|
115 |
-
### Postprocessing Utils for Segmentation Tokens
|
116 |
-
|
117 |
-
_MODEL_PATH = 'vae-oid.npz'
|
118 |
-
|
119 |
-
_SEGMENT_DETECT_RE = re.compile(
|
120 |
-
r'(.*?)' +
|
121 |
-
r'<loc(\d{4})>' * 4 + r'\s*' +
|
122 |
-
'(?:%s)?' % (r'<seg(\d{3})>' * 16) +
|
123 |
-
r'\s*([^;<>]+)? ?(?:; )?',
|
124 |
-
)
|
125 |
-
|
126 |
-
COLORS = ['#4285f4', '#db4437', '#f4b400', '#0f9d58', '#e48ef1']
|
127 |
-
|
128 |
-
def _get_params(checkpoint):
|
129 |
-
"""
|
130 |
-
Convert PyTorch checkpoint to Flax params.
|
131 |
-
|
132 |
-
Args:
|
133 |
-
checkpoint (dict): PyTorch checkpoint dictionary.
|
134 |
-
|
135 |
-
Returns:
|
136 |
-
dict: Flax parameters.
|
137 |
-
"""
|
138 |
-
def transp(kernel):
|
139 |
-
return np.transpose(kernel, (2, 3, 1, 0))
|
140 |
-
|
141 |
-
def conv(name):
|
142 |
-
return {
|
143 |
-
'bias': checkpoint[name + '.bias'],
|
144 |
-
'kernel': transp(checkpoint[name + '.weight']),
|
145 |
-
}
|
146 |
-
|
147 |
-
def resblock(name):
|
148 |
-
return {
|
149 |
-
'Conv_0': conv(name + '.0'),
|
150 |
-
'Conv_1': conv(name + '.2'),
|
151 |
-
'Conv_2': conv(name + '.4'),
|
152 |
-
}
|
153 |
-
|
154 |
-
return {
|
155 |
-
'_embeddings': checkpoint['_vq_vae._embedding'],
|
156 |
-
'Conv_0': conv('decoder.0'),
|
157 |
-
'ResBlock_0': resblock('decoder.2.net'),
|
158 |
-
'ResBlock_1': resblock('decoder.3.net'),
|
159 |
-
'ConvTranspose_0': conv('decoder.4'),
|
160 |
-
'ConvTranspose_1': conv('decoder.6'),
|
161 |
-
'ConvTranspose_2': conv('decoder.8'),
|
162 |
-
'ConvTranspose_3': conv('decoder.10'),
|
163 |
-
'Conv_1': conv('decoder.12'),
|
164 |
-
}
|
165 |
-
|
166 |
-
|
167 |
-
def _quantized_values_from_codebook_indices(codebook_indices, embeddings):
|
168 |
-
"""
|
169 |
-
Get quantized values from codebook indices.
|
170 |
-
|
171 |
-
Args:
|
172 |
-
codebook_indices (jax.numpy.ndarray): Codebook indices.
|
173 |
-
embeddings (jax.numpy.ndarray): Embeddings.
|
174 |
-
|
175 |
-
Returns:
|
176 |
-
jax.numpy.ndarray: Quantized values.
|
177 |
-
"""
|
178 |
-
batch_size, num_tokens = codebook_indices.shape
|
179 |
-
assert num_tokens == 16, codebook_indices.shape
|
180 |
-
unused_num_embeddings, embedding_dim = embeddings.shape
|
181 |
-
|
182 |
-
encodings = jnp.take(embeddings, codebook_indices.reshape((-1)), axis=0)
|
183 |
-
encodings = encodings.reshape((batch_size, 4, 4, embedding_dim))
|
184 |
-
return encodings
|
185 |
-
|
186 |
-
|
187 |
-
@functools.cache
|
188 |
-
def _get_reconstruct_masks():
|
189 |
-
"""
|
190 |
-
Reconstruct masks from codebook indices.
|
191 |
-
|
192 |
-
Returns:
|
193 |
-
function: A function that expects indices shaped `[B, 16]` of dtype int32, each
|
194 |
-
ranging from 0 to 127 (inclusive), and returns decoded masks sized
|
195 |
-
`[B, 64, 64, 1]`, of dtype float32, in range [-1, 1].
|
196 |
-
"""
|
197 |
-
|
198 |
-
class ResBlock(nn.Module):
|
199 |
-
features: int
|
200 |
-
|
201 |
-
@nn.compact
|
202 |
-
def __call__(self, x):
|
203 |
-
original_x = x
|
204 |
-
x = nn.Conv(features=self.features, kernel_size=(3, 3), padding=1)(x)
|
205 |
-
x = nn.relu(x)
|
206 |
-
x = nn.Conv(features=self.features, kernel_size=(3, 3), padding=1)(x)
|
207 |
-
x = nn.relu(x)
|
208 |
-
x = nn.Conv(features=self.features, kernel_size=(1, 1), padding=0)(x)
|
209 |
-
return x + original_x
|
210 |
-
|
211 |
-
class Decoder(nn.Module):
|
212 |
-
"""Upscales quantized vectors to mask."""
|
213 |
-
|
214 |
-
@nn.compact
|
215 |
-
def __call__(self, x):
|
216 |
-
num_res_blocks = 2
|
217 |
-
dim = 128
|
218 |
-
num_upsample_layers = 4
|
219 |
-
|
220 |
-
x = nn.Conv(features=dim, kernel_size=(1, 1), padding=0)(x)
|
221 |
-
x = nn.relu(x)
|
222 |
-
|
223 |
-
for _ in range(num_res_blocks):
|
224 |
-
x = ResBlock(features=dim)(x)
|
225 |
-
|
226 |
-
for _ in range(num_upsample_layers):
|
227 |
-
x = nn.ConvTranspose(
|
228 |
-
features=dim,
|
229 |
-
kernel_size=(4, 4),
|
230 |
-
strides=(2, 2),
|
231 |
-
padding=2,
|
232 |
-
transpose_kernel=True,
|
233 |
-
)(x)
|
234 |
-
x = nn.relu(x)
|
235 |
-
dim //= 2
|
236 |
-
|
237 |
-
x = nn.Conv(features=1, kernel_size=(1, 1), padding=0)(x)
|
238 |
-
|
239 |
-
return x
|
240 |
-
|
241 |
-
def reconstruct_masks(codebook_indices):
|
242 |
-
"""
|
243 |
-
Reconstruct masks from codebook indices.
|
244 |
-
|
245 |
-
Args:
|
246 |
-
codebook_indices (jax.numpy.ndarray): Codebook indices.
|
247 |
-
|
248 |
-
Returns:
|
249 |
-
jax.numpy.ndarray: Reconstructed masks.
|
250 |
-
"""
|
251 |
-
quantized = _quantized_values_from_codebook_indices(
|
252 |
-
codebook_indices, params['_embeddings']
|
253 |
-
)
|
254 |
-
return Decoder().apply({'params': params}, quantized)
|
255 |
-
|
256 |
-
with open(_MODEL_PATH, 'rb') as f:
|
257 |
-
params = _get_params(dict(np.load(f)))
|
258 |
-
|
259 |
-
return jax.jit(reconstruct_masks, backend='cpu')
|
260 |
-
|
261 |
-
def extract_objs(text, width, height, unique_labels=False):
|
262 |
"""
|
263 |
-
|
264 |
-
|
265 |
-
Args:
|
266 |
-
text (str): Input text containing "<loc>" and "<seg>" tokens.
|
267 |
-
width (int): Width of the image.
|
268 |
-
height (int): Height of the image.
|
269 |
-
unique_labels (bool, optional): Whether to enforce unique labels. Defaults to False.
|
270 |
|
271 |
-
|
272 |
-
|
|
|
|
|
273 |
"""
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
mask[y1:y2, x1:x2] = np.array(m64.resize([x2 - x1, y2 - y1])) / 255.0
|
298 |
-
|
299 |
-
content = m.group()
|
300 |
-
if before:
|
301 |
-
objs.append(dict(content=before))
|
302 |
-
content = content[len(before):]
|
303 |
-
while unique_labels and name in seen:
|
304 |
-
name = (name or '') + "'"
|
305 |
-
seen.add(name)
|
306 |
-
objs.append(dict(
|
307 |
-
content=content, xyxy=(x1, y1, x2, y2), mask=mask, name=name))
|
308 |
-
text = text[len(before) + len(content):]
|
309 |
-
|
310 |
-
if text:
|
311 |
-
objs.append(dict(content=text))
|
312 |
-
|
313 |
-
return objs
|
314 |
|
315 |
#########
|
316 |
|
@@ -319,90 +54,39 @@ IMAGE_PROMPT="Are these cells healthy or cancerous?"
|
|
319 |
|
320 |
with gr.Blocks(css="style.css") as demo:
|
321 |
gr.Markdown(INTRO_TEXT)
|
322 |
-
with gr.Tab("
|
323 |
-
with gr.Row():
|
324 |
-
with gr.Column():
|
325 |
-
image = gr.Image(type="pil")
|
326 |
-
seg_input = gr.Text(label="Entities to Segment/Detect")
|
327 |
-
|
328 |
-
with gr.Column():
|
329 |
-
annotated_image = gr.AnnotatedImage(label="Output")
|
330 |
-
|
331 |
-
seg_btn = gr.Button("Submit")
|
332 |
-
examples = [["./examples/cnmc1.bmp", "segment cancerous cells"],
|
333 |
-
["./examples/cnmc2.bmp", "detect cancerous cells"],
|
334 |
-
["./examples/cnmc3.bmp", "segment healthy cells"],
|
335 |
-
["./examples/cnmc4.bmp", "detect healthy cells"],
|
336 |
-
["./examples/cnmc5.bmp", "segment cancerous cells"],
|
337 |
-
["./examples/cnmc6.bmp", "detect cancerous cells"],
|
338 |
-
["./examples/cnmc7.bmp", "segment healthy cells"],
|
339 |
-
["./examples/cnmc8.bmp", "detect healthy cells"],
|
340 |
-
["./examples/cnmc9.bmp", "segment cancerous cells"],
|
341 |
-
["./examples/cart1.jpg", "segment cells"],
|
342 |
-
["./examples/cart1.jpg", "detect cells"],
|
343 |
-
["./examples/cart2.jpg", "segment cells"],
|
344 |
-
["./examples/cart2.jpg", "detect cells"],
|
345 |
-
["./examples/cart3.jpg", "segment cells"],
|
346 |
-
["./examples/cart3.jpg", "detect cells"]]
|
347 |
-
gr.Examples(
|
348 |
-
examples=examples,
|
349 |
-
inputs=[image, seg_input],
|
350 |
-
)
|
351 |
-
seg_inputs = [
|
352 |
-
image,
|
353 |
-
seg_input
|
354 |
-
]
|
355 |
-
seg_outputs = [
|
356 |
-
annotated_image
|
357 |
-
]
|
358 |
-
seg_btn.click(
|
359 |
-
fn=parse_segmentation,
|
360 |
-
inputs=seg_inputs,
|
361 |
-
outputs=seg_outputs,
|
362 |
-
)
|
363 |
-
with gr.Tab("Text Generation"):
|
364 |
with gr.Row():
|
365 |
with gr.Column():
|
366 |
image = gr.Image(type="pil")
|
367 |
with gr.Column():
|
368 |
text_input = gr.Text(label="Input Text")
|
369 |
text_output = gr.Text(label="Text Output")
|
370 |
-
tokens = gr.Slider(
|
371 |
-
label="Max New Tokens",
|
372 |
-
info="Set to larger for longer generation.",
|
373 |
-
minimum=10,
|
374 |
-
maximum=100,
|
375 |
-
value=50,
|
376 |
-
step=10,
|
377 |
-
)
|
378 |
chat_btn = gr.Button()
|
379 |
|
380 |
chat_inputs = [
|
381 |
image,
|
382 |
-
|
383 |
-
tokens
|
384 |
]
|
385 |
chat_outputs = [
|
386 |
text_output
|
387 |
]
|
388 |
chat_btn.click(
|
389 |
-
fn=
|
390 |
inputs=chat_inputs,
|
391 |
outputs=chat_outputs,
|
392 |
)
|
393 |
|
394 |
-
examples = [["./examples/
|
395 |
-
["./examples/
|
396 |
-
["./examples/
|
397 |
-
["./examples/
|
398 |
-
["./examples/
|
399 |
-
["./examples/
|
400 |
-
["./examples/
|
401 |
-
["./examples/
|
402 |
-
["./examples/
|
403 |
-
["./examples/
|
404 |
-
|
405 |
-
["./examples/cart3.jpg", IMAGE_PROMPT]]
|
406 |
gr.Examples(
|
407 |
examples=examples,
|
408 |
inputs=chat_inputs,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from typing import *
|
3 |
+
from pillow_heif import register_heif_opener
|
4 |
+
register_heif_opener()
|
5 |
+
import vision_agent as va
|
6 |
+
from vision_agent.tools import register_tool
|
7 |
+
|
8 |
+
from vision_agent.tools import load_image, owl_v2, overlay_bounding_boxes, save_image
|
9 |
|
|
|
|
|
10 |
from huggingface_hub import login
|
11 |
import spaces
|
12 |
|
|
|
14 |
hf_token = os.getenv("HF_TOKEN")
|
15 |
login(token=hf_token, add_to_git_credential=True)
|
16 |
|
17 |
+
def detect_brain_tumor(image_path: str, output_path: str, debug: bool = False) -> None:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
"""
|
19 |
+
Detects a brain tumor in the given image and saves the image with bounding boxes.
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
+
Parameters:
|
22 |
+
image_path (str): The path to the input image.
|
23 |
+
output_path (str): The path to save the output image with bounding boxes.
|
24 |
+
debug (bool): Flag to enable logging for debugging purposes.
|
25 |
"""
|
26 |
+
# Step 1: Load the image
|
27 |
+
image = load_image(image_path)
|
28 |
+
if debug:
|
29 |
+
print(f"Image loaded from {image_path}")
|
30 |
+
|
31 |
+
# Step 2: Detect brain tumor using owl_v2
|
32 |
+
prompt = "detect brain tumor"
|
33 |
+
detections = owl_v2(prompt, image)
|
34 |
+
if debug:
|
35 |
+
print(f"Detections: {detections}")
|
36 |
+
|
37 |
+
# Step 3: Overlay bounding boxes on the image
|
38 |
+
image_with_bboxes = overlay_bounding_boxes(image, detections)
|
39 |
+
if debug:
|
40 |
+
print("Bounding boxes overlaid on the image")
|
41 |
+
|
42 |
+
# Step 4: Save the resulting image
|
43 |
+
save_image(image_with_bboxes, output_path)
|
44 |
+
if debug:
|
45 |
+
print(f"Image saved to {output_path}")
|
46 |
+
|
47 |
+
# Example usage (uncomment to run):
|
48 |
+
# detect_brain_tumor("/content/drive/MyDrive/kaggle/datasets/brain-tumor-image-dataset-semantic-segmentation_old/train_categories/1385_jpg.rf.3c67cb92e2922dba0e6dba86f69df40b.jpg", "/content/drive/MyDrive/kaggle/datasets/brain-tumor-image-dataset-semantic-segmentation_old/output/1385_jpg.rf.3c67cb92e2922dba0e6dba86f69df40b.jpg", debug=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
#########
|
51 |
|
|
|
54 |
|
55 |
with gr.Blocks(css="style.css") as demo:
|
56 |
gr.Markdown(INTRO_TEXT)
|
57 |
+
with gr.Tab("Agentic Detection"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
with gr.Row():
|
59 |
with gr.Column():
|
60 |
image = gr.Image(type="pil")
|
61 |
with gr.Column():
|
62 |
text_input = gr.Text(label="Input Text")
|
63 |
text_output = gr.Text(label="Text Output")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
chat_btn = gr.Button()
|
65 |
|
66 |
chat_inputs = [
|
67 |
image,
|
68 |
+
"./output/tmp.jpg",
|
|
|
69 |
]
|
70 |
chat_outputs = [
|
71 |
text_output
|
72 |
]
|
73 |
chat_btn.click(
|
74 |
+
fn=detect_brain_tumor,
|
75 |
inputs=chat_inputs,
|
76 |
outputs=chat_outputs,
|
77 |
)
|
78 |
|
79 |
+
examples = [["./examples/194_jpg.rf.3e3dd592d034bb5ee27a978553819f42.jpg"],
|
80 |
+
["./examples/239_jpg.rf.3dcc0799277fb78a2ab21db7761ccaeb.jpg"],
|
81 |
+
["./examples/1385_jpg.rf.3c67cb92e2922dba0e6dba86f69df40b.jpg"],
|
82 |
+
["./examples/1491_jpg.rf.3c658e83538de0fa5a3f4e13d7d85f12.jpg"],
|
83 |
+
["./examples/1550_jpg.rf.3d067be9580ec32dbee5a89c675d8459.jpg"],
|
84 |
+
["./examples/2256_jpg.rf.3afd7903eaf3f3c5aa8da4bbb928bc19.jpg"],
|
85 |
+
["./examples/1550_jpg.rf.3d067be9580ec32dbee5a89c675d8459.jpg"],
|
86 |
+
["./examples/1550_jpg.rf.3d067be9580ec32dbee5a89c675d8459.jpg"],
|
87 |
+
["./examples/2871_jpg.rf.3b6eadfbb369abc2b3bcb52b406b74f2.jpg"],
|
88 |
+
["./examples/2921_jpg.rf.3b952f91f27a6248091e7601c22323ad.jpg"],
|
89 |
+
]
|
|
|
90 |
gr.Examples(
|
91 |
examples=examples,
|
92 |
inputs=chat_inputs,
|
examples/1385_jpg.rf.3c67cb92e2922dba0e6dba86f69df40b.jpg
ADDED
examples/1491_jpg.rf.3c658e83538de0fa5a3f4e13d7d85f12.jpg
ADDED
examples/1550_jpg.rf.3d067be9580ec32dbee5a89c675d8459.jpg
ADDED
examples/194_jpg.rf.3e3dd592d034bb5ee27a978553819f42.jpg
ADDED
examples/2256_jpg.rf.3afd7903eaf3f3c5aa8da4bbb928bc19.jpg
ADDED
examples/239_jpg.rf.3dcc0799277fb78a2ab21db7761ccaeb.jpg
ADDED
examples/2777_jpg.rf.3b60ea7f7e70552e70e41528052018bd.jpg
ADDED
examples/2860_jpg.rf.3bb87fa4f938af5abfb1e17676ec1dad.jpg
ADDED
examples/2871_jpg.rf.3b6eadfbb369abc2b3bcb52b406b74f2.jpg
ADDED
examples/2921_jpg.rf.3b952f91f27a6248091e7601c22323ad.jpg
ADDED
examples/_annotations.coco.json
ADDED
@@ -0,0 +1,388 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"info": {
|
3 |
+
"year": "2023",
|
4 |
+
"version": "1",
|
5 |
+
"description": "Exported from roboflow.com",
|
6 |
+
"contributor": "",
|
7 |
+
"url": "https://public.roboflow.com/object-detection/undefined",
|
8 |
+
"date_created": "2023-08-19T04:37:54+00:00"
|
9 |
+
},
|
10 |
+
"licenses": [
|
11 |
+
{
|
12 |
+
"id": 1,
|
13 |
+
"url": "https://creativecommons.org/licenses/by/4.0/",
|
14 |
+
"name": "CC BY 4.0"
|
15 |
+
}
|
16 |
+
],
|
17 |
+
"categories": [
|
18 |
+
{
|
19 |
+
"id": 0,
|
20 |
+
"name": "Tumor",
|
21 |
+
"supercategory": "none"
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"id": 1,
|
25 |
+
"name": "0",
|
26 |
+
"supercategory": "Tumor"
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"id": 2,
|
30 |
+
"name": "1",
|
31 |
+
"supercategory": "Tumor"
|
32 |
+
}
|
33 |
+
],
|
34 |
+
"images": [
|
35 |
+
{
|
36 |
+
"id": 0,
|
37 |
+
"license": 1,
|
38 |
+
"file_name": "2256_jpg.rf.3afd7903eaf3f3c5aa8da4bbb928bc19.jpg",
|
39 |
+
"height": 640,
|
40 |
+
"width": 640,
|
41 |
+
"date_captured": "2023-08-19T04:37:54+00:00"
|
42 |
+
},
|
43 |
+
{
|
44 |
+
"id": 1,
|
45 |
+
"license": 1,
|
46 |
+
"file_name": "2871_jpg.rf.3b6eadfbb369abc2b3bcb52b406b74f2.jpg",
|
47 |
+
"height": 640,
|
48 |
+
"width": 640,
|
49 |
+
"date_captured": "2023-08-19T04:37:54+00:00"
|
50 |
+
},
|
51 |
+
{
|
52 |
+
"id": 2,
|
53 |
+
"license": 1,
|
54 |
+
"file_name": "2921_jpg.rf.3b952f91f27a6248091e7601c22323ad.jpg",
|
55 |
+
"height": 640,
|
56 |
+
"width": 640,
|
57 |
+
"date_captured": "2023-08-19T04:37:54+00:00"
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"id": 3,
|
61 |
+
"license": 1,
|
62 |
+
"file_name": "2777_jpg.rf.3b60ea7f7e70552e70e41528052018bd.jpg",
|
63 |
+
"height": 640,
|
64 |
+
"width": 640,
|
65 |
+
"date_captured": "2023-08-19T04:37:54+00:00"
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"id": 4,
|
69 |
+
"license": 1,
|
70 |
+
"file_name": "2860_jpg.rf.3bb87fa4f938af5abfb1e17676ec1dad.jpg",
|
71 |
+
"height": 640,
|
72 |
+
"width": 640,
|
73 |
+
"date_captured": "2023-08-19T04:37:54+00:00"
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"id": 7,
|
77 |
+
"license": 1,
|
78 |
+
"file_name": "1491_jpg.rf.3c658e83538de0fa5a3f4e13d7d85f12.jpg",
|
79 |
+
"height": 640,
|
80 |
+
"width": 640,
|
81 |
+
"date_captured": "2023-08-19T04:37:54+00:00"
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"id": 8,
|
85 |
+
"license": 1,
|
86 |
+
"file_name": "1385_jpg.rf.3c67cb92e2922dba0e6dba86f69df40b.jpg",
|
87 |
+
"height": 640,
|
88 |
+
"width": 640,
|
89 |
+
"date_captured": "2023-08-19T04:37:54+00:00"
|
90 |
+
},
|
91 |
+
{
|
92 |
+
"id": 11,
|
93 |
+
"license": 1,
|
94 |
+
"file_name": "1550_jpg.rf.3d067be9580ec32dbee5a89c675d8459.jpg",
|
95 |
+
"height": 640,
|
96 |
+
"width": 640,
|
97 |
+
"date_captured": "2023-08-19T04:37:54+00:00"
|
98 |
+
},
|
99 |
+
{
|
100 |
+
"id": 16,
|
101 |
+
"license": 1,
|
102 |
+
"file_name": "239_jpg.rf.3dcc0799277fb78a2ab21db7761ccaeb.jpg",
|
103 |
+
"height": 640,
|
104 |
+
"width": 640,
|
105 |
+
"date_captured": "2023-08-19T04:37:54+00:00"
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"id": 17,
|
109 |
+
"license": 1,
|
110 |
+
"file_name": "194_jpg.rf.3e3dd592d034bb5ee27a978553819f42.jpg",
|
111 |
+
"height": 640,
|
112 |
+
"width": 640,
|
113 |
+
"date_captured": "2023-08-19T04:37:54+00:00"
|
114 |
+
}
|
115 |
+
],
|
116 |
+
"annotations": [
|
117 |
+
{
|
118 |
+
"id": 0,
|
119 |
+
"image_id": 0,
|
120 |
+
"category_id": 1,
|
121 |
+
"bbox": [
|
122 |
+
145,
|
123 |
+
239,
|
124 |
+
168.75,
|
125 |
+
162.5
|
126 |
+
],
|
127 |
+
"area": 27421.875,
|
128 |
+
"segmentation": [
|
129 |
+
[
|
130 |
+
313.75,
|
131 |
+
238.75,
|
132 |
+
145,
|
133 |
+
238.75,
|
134 |
+
145,
|
135 |
+
401.25,
|
136 |
+
313.75,
|
137 |
+
401.25,
|
138 |
+
313.75,
|
139 |
+
238.75
|
140 |
+
]
|
141 |
+
],
|
142 |
+
"iscrowd": 0
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"id": 1,
|
146 |
+
"image_id": 1,
|
147 |
+
"category_id": 1,
|
148 |
+
"bbox": [
|
149 |
+
194,
|
150 |
+
176,
|
151 |
+
148.75,
|
152 |
+
233.75
|
153 |
+
],
|
154 |
+
"area": 34770.313,
|
155 |
+
"segmentation": [
|
156 |
+
[
|
157 |
+
342.5,
|
158 |
+
176.25,
|
159 |
+
193.75,
|
160 |
+
176.25,
|
161 |
+
193.75,
|
162 |
+
410,
|
163 |
+
342.5,
|
164 |
+
410,
|
165 |
+
342.5,
|
166 |
+
176.25
|
167 |
+
]
|
168 |
+
],
|
169 |
+
"iscrowd": 0
|
170 |
+
},
|
171 |
+
{
|
172 |
+
"id": 2,
|
173 |
+
"image_id": 2,
|
174 |
+
"category_id": 1,
|
175 |
+
"bbox": [
|
176 |
+
133,
|
177 |
+
173,
|
178 |
+
162.5,
|
179 |
+
185
|
180 |
+
],
|
181 |
+
"area": 30062.5,
|
182 |
+
"segmentation": [
|
183 |
+
[
|
184 |
+
295,
|
185 |
+
172.5,
|
186 |
+
132.5,
|
187 |
+
172.5,
|
188 |
+
132.5,
|
189 |
+
357.5,
|
190 |
+
295,
|
191 |
+
357.5,
|
192 |
+
295,
|
193 |
+
172.5
|
194 |
+
]
|
195 |
+
],
|
196 |
+
"iscrowd": 0
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"id": 3,
|
200 |
+
"image_id": 3,
|
201 |
+
"category_id": 1,
|
202 |
+
"bbox": [
|
203 |
+
245,
|
204 |
+
358,
|
205 |
+
138.75,
|
206 |
+
166.25
|
207 |
+
],
|
208 |
+
"area": 23067.188,
|
209 |
+
"segmentation": [
|
210 |
+
[
|
211 |
+
383.75,
|
212 |
+
357.5,
|
213 |
+
245,
|
214 |
+
357.5,
|
215 |
+
245,
|
216 |
+
523.75,
|
217 |
+
383.75,
|
218 |
+
523.75,
|
219 |
+
383.75,
|
220 |
+
357.5
|
221 |
+
]
|
222 |
+
],
|
223 |
+
"iscrowd": 0
|
224 |
+
},
|
225 |
+
{
|
226 |
+
"id": 4,
|
227 |
+
"image_id": 4,
|
228 |
+
"category_id": 1,
|
229 |
+
"bbox": [
|
230 |
+
80,
|
231 |
+
189,
|
232 |
+
112.5,
|
233 |
+
132.5
|
234 |
+
],
|
235 |
+
"area": 14906.25,
|
236 |
+
"segmentation": [
|
237 |
+
[
|
238 |
+
192.5,
|
239 |
+
188.75,
|
240 |
+
80,
|
241 |
+
188.75,
|
242 |
+
80,
|
243 |
+
321.25,
|
244 |
+
192.5,
|
245 |
+
321.25,
|
246 |
+
192.5,
|
247 |
+
188.75
|
248 |
+
]
|
249 |
+
],
|
250 |
+
"iscrowd": 0
|
251 |
+
},
|
252 |
+
{
|
253 |
+
"id": 7,
|
254 |
+
"image_id": 7,
|
255 |
+
"category_id": 2,
|
256 |
+
"bbox": [
|
257 |
+
350,
|
258 |
+
288,
|
259 |
+
42.5,
|
260 |
+
52.5
|
261 |
+
],
|
262 |
+
"area": 2231.25,
|
263 |
+
"segmentation": [
|
264 |
+
[
|
265 |
+
392.5,
|
266 |
+
287.5,
|
267 |
+
350,
|
268 |
+
287.5,
|
269 |
+
350,
|
270 |
+
340,
|
271 |
+
392.5,
|
272 |
+
340,
|
273 |
+
392.5,
|
274 |
+
287.5
|
275 |
+
]
|
276 |
+
],
|
277 |
+
"iscrowd": 0
|
278 |
+
},
|
279 |
+
{
|
280 |
+
"id": 8,
|
281 |
+
"image_id": 8,
|
282 |
+
"category_id": 2,
|
283 |
+
"bbox": [
|
284 |
+
239,
|
285 |
+
250,
|
286 |
+
61.25,
|
287 |
+
87.5
|
288 |
+
],
|
289 |
+
"area": 5359.375,
|
290 |
+
"segmentation": [
|
291 |
+
[
|
292 |
+
300,
|
293 |
+
250,
|
294 |
+
238.75,
|
295 |
+
250,
|
296 |
+
238.75,
|
297 |
+
337.5,
|
298 |
+
300,
|
299 |
+
337.5,
|
300 |
+
300,
|
301 |
+
250
|
302 |
+
]
|
303 |
+
],
|
304 |
+
"iscrowd": 0
|
305 |
+
},
|
306 |
+
{
|
307 |
+
"id": 11,
|
308 |
+
"image_id": 11,
|
309 |
+
"category_id": 2,
|
310 |
+
"bbox": [
|
311 |
+
283,
|
312 |
+
270,
|
313 |
+
111.25,
|
314 |
+
102.5
|
315 |
+
],
|
316 |
+
"area": 11403.125,
|
317 |
+
"segmentation": [
|
318 |
+
[
|
319 |
+
393.75,
|
320 |
+
270,
|
321 |
+
282.5,
|
322 |
+
270,
|
323 |
+
282.5,
|
324 |
+
372.5,
|
325 |
+
393.75,
|
326 |
+
372.5,
|
327 |
+
393.75,
|
328 |
+
270
|
329 |
+
]
|
330 |
+
],
|
331 |
+
"iscrowd": 0
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"id": 16,
|
335 |
+
"image_id": 16,
|
336 |
+
"category_id": 2,
|
337 |
+
"bbox": [
|
338 |
+
279,
|
339 |
+
236,
|
340 |
+
78.75,
|
341 |
+
76.25
|
342 |
+
],
|
343 |
+
"area": 6004.688,
|
344 |
+
"segmentation": [
|
345 |
+
[
|
346 |
+
357.5,
|
347 |
+
236.25,
|
348 |
+
278.75,
|
349 |
+
236.25,
|
350 |
+
278.75,
|
351 |
+
312.5,
|
352 |
+
357.5,
|
353 |
+
312.5,
|
354 |
+
357.5,
|
355 |
+
236.25
|
356 |
+
]
|
357 |
+
],
|
358 |
+
"iscrowd": 0
|
359 |
+
},
|
360 |
+
{
|
361 |
+
"id": 17,
|
362 |
+
"image_id": 17,
|
363 |
+
"category_id": 2,
|
364 |
+
"bbox": [
|
365 |
+
286,
|
366 |
+
160,
|
367 |
+
188.75,
|
368 |
+
166.25
|
369 |
+
],
|
370 |
+
"area": 31379.688,
|
371 |
+
"segmentation": [
|
372 |
+
[
|
373 |
+
475,
|
374 |
+
160,
|
375 |
+
286.25,
|
376 |
+
160,
|
377 |
+
286.25,
|
378 |
+
326.25,
|
379 |
+
475,
|
380 |
+
326.25,
|
381 |
+
475,
|
382 |
+
160
|
383 |
+
]
|
384 |
+
],
|
385 |
+
"iscrowd": 0
|
386 |
+
}
|
387 |
+
]
|
388 |
+
}
|
examples/tumor1.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"name": "tumor1",
|
3 |
+
"comment": "",
|
4 |
+
"model": "",
|
5 |
+
"prompt": "detect cell tumor",
|
6 |
+
"license": ""
|
7 |
+
}
|
examples/tumor10.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"name": "tumor10",
|
3 |
+
"comment": "",
|
4 |
+
"model": "",
|
5 |
+
"prompt": "detect cell tumor",
|
6 |
+
"license": ""
|
7 |
+
}
|
examples/tumor2.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"name": "tumor2",
|
3 |
+
"comment": "",
|
4 |
+
"model": "",
|
5 |
+
"prompt": "detect cell tumor",
|
6 |
+
"license": ""
|
7 |
+
}
|
examples/tumor3.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"name": "tumor3",
|
3 |
+
"comment": "",
|
4 |
+
"model": "",
|
5 |
+
"prompt": "detect cell tumor",
|
6 |
+
"license": ""
|
7 |
+
}
|
examples/tumor4.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"name": "tumor4",
|
3 |
+
"comment": "",
|
4 |
+
"model": "",
|
5 |
+
"prompt": "detect cell tumor",
|
6 |
+
"license": ""
|
7 |
+
}
|
examples/tumor5.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"name": "tumor5",
|
3 |
+
"comment": "",
|
4 |
+
"model": "",
|
5 |
+
"prompt": "detect cell tumor",
|
6 |
+
"license": ""
|
7 |
+
}
|
examples/tumor6.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"name": "tumor6",
|
3 |
+
"comment": "",
|
4 |
+
"model": "",
|
5 |
+
"prompt": "detect cell tumor",
|
6 |
+
"license": ""
|
7 |
+
}
|
examples/tumor7.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"name": "tumor7",
|
3 |
+
"comment": "",
|
4 |
+
"model": "",
|
5 |
+
"prompt": "detect cell tumor",
|
6 |
+
"license": ""
|
7 |
+
}
|
examples/tumor8.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"name": "tumor8",
|
3 |
+
"comment": "",
|
4 |
+
"model": "",
|
5 |
+
"prompt": "detect cell tumor",
|
6 |
+
"license": ""
|
7 |
+
}
|
examples/tumor9.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"name": "tumor9",
|
3 |
+
"comment": "",
|
4 |
+
"model": "",
|
5 |
+
"prompt": "detect cell tumor",
|
6 |
+
"license": ""
|
7 |
+
}
|
requirements.txt
CHANGED
@@ -1,6 +1,2 @@
|
|
1 |
-
git+https://github.com/huggingface/transformers.git
|
2 |
-
torch
|
3 |
-
jax
|
4 |
-
flax
|
5 |
spaces
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
1 |
spaces
|
2 |
+
vision-agent
|
vae-oid.npz
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:5586010257b8536dddefab65e7755077f21d5672d5674dacf911f73ae95a4447
|
3 |
-
size 8479556
|
|
|
|
|
|
|
|