Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,41 +1,40 @@
|
|
1 |
import functools
|
2 |
import re
|
3 |
-
|
4 |
import PIL.Image
|
5 |
import gradio as gr
|
6 |
import jax
|
7 |
import jax.numpy as jnp
|
8 |
import numpy as np
|
9 |
-
|
10 |
import flax.linen as nn
|
11 |
from inference import PaliGemmaModel
|
12 |
|
13 |
-
pali_gemma_model = PaliGemmaModel() # Create an instance of the model
|
14 |
-
|
15 |
COLORS = ['#4285f4', '#db4437', '#f4b400', '#0f9d58', '#e48ef1']
|
16 |
|
|
|
|
|
|
|
17 |
##### Parse segmentation output tokens into masks
|
18 |
##### Also returns bounding boxes with their labels
|
19 |
|
20 |
def parse_segmentation(input_image, input_text, max_new_tokens=100):
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
)
|
37 |
-
|
38 |
-
|
39 |
|
40 |
INTRO_TEXT="🔬🧠 CellVision AI -- Intelligent Cell Imaging Analysis 🤖🧫"
|
41 |
IMAGE_PROMPT="""
|
@@ -44,77 +43,79 @@ Assess the biological context to identify signs of cancer and the presence of an
|
|
44 |
"""
|
45 |
|
46 |
with gr.Blocks(css="style.css") as demo:
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
with gr.Column():
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
|
|
71 |
]
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
)
|
80 |
-
with gr.Tab("Text Generation"):
|
81 |
-
with gr.Column():
|
82 |
-
image = gr.Image(type="pil")
|
83 |
-
text_input = gr.Text(label="Input Text")
|
84 |
-
|
85 |
-
text_output = gr.Text(label="Text Output")
|
86 |
-
chat_btn = gr.Button()
|
87 |
-
tokens = gr.Slider(
|
88 |
-
label="Max New Tokens",
|
89 |
-
info="Set to larger for longer generation.",
|
90 |
-
minimum=10,
|
91 |
-
maximum=100,
|
92 |
-
value=50,
|
93 |
-
step=10,
|
94 |
)
|
95 |
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
]
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
fn=pali_gemma_model.infer,
|
106 |
-
inputs=chat_inputs,
|
107 |
-
outputs=chat_outputs,
|
108 |
-
)
|
109 |
-
|
110 |
-
examples = [["./examples/cart1.jpg", IMAGE_PROMPT],
|
111 |
-
["./examples/cart2.jpg", IMAGE_PROMPT],
|
112 |
-
["./examples/cart3.jpg", IMAGE_PROMPT]]
|
113 |
-
gr.Examples(
|
114 |
-
examples=examples,
|
115 |
-
inputs=chat_inputs,
|
116 |
-
)
|
117 |
-
|
118 |
|
119 |
### Postprocessing Utils for Segmentation Tokens
|
120 |
### Segmentation tokens are passed to another VAE which decodes them to a mask
|
@@ -128,156 +129,153 @@ _SEGMENT_DETECT_RE = re.compile(
|
|
128 |
r'\s*([^;<>]+)? ?(?:; )?',
|
129 |
)
|
130 |
|
131 |
-
|
132 |
def _get_params(checkpoint):
|
133 |
-
|
134 |
|
135 |
-
|
136 |
-
|
137 |
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
|
144 |
-
def resblock(name):
|
145 |
return {
|
146 |
-
'
|
147 |
-
'
|
148 |
-
'
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
}
|
150 |
|
151 |
-
return {
|
152 |
-
'_embeddings': checkpoint['_vq_vae._embedding'],
|
153 |
-
'Conv_0': conv('decoder.0'),
|
154 |
-
'ResBlock_0': resblock('decoder.2.net'),
|
155 |
-
'ResBlock_1': resblock('decoder.3.net'),
|
156 |
-
'ConvTranspose_0': conv('decoder.4'),
|
157 |
-
'ConvTranspose_1': conv('decoder.6'),
|
158 |
-
'ConvTranspose_2': conv('decoder.8'),
|
159 |
-
'ConvTranspose_3': conv('decoder.10'),
|
160 |
-
'Conv_1': conv('decoder.12'),
|
161 |
-
}
|
162 |
-
|
163 |
-
|
164 |
def _quantized_values_from_codebook_indices(codebook_indices, embeddings):
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
encodings = jnp.take(embeddings, codebook_indices.reshape((-1)), axis=0)
|
170 |
-
encodings = encodings.reshape((batch_size, 4, 4, embedding_dim))
|
171 |
-
return encodings
|
172 |
|
|
|
|
|
|
|
173 |
|
174 |
@functools.cache
|
175 |
def _get_reconstruct_masks():
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
|
232 |
-
|
233 |
-
|
234 |
|
235 |
-
|
236 |
|
237 |
def extract_objs(text, width, height, unique_labels=False):
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
|
280 |
#########
|
281 |
|
282 |
if __name__ == "__main__":
|
283 |
-
demo.queue(max_size=10).launch(debug=True)
|
|
|
1 |
import functools
|
2 |
import re
|
|
|
3 |
import PIL.Image
|
4 |
import gradio as gr
|
5 |
import jax
|
6 |
import jax.numpy as jnp
|
7 |
import numpy as np
|
|
|
8 |
import flax.linen as nn
|
9 |
from inference import PaliGemmaModel
|
10 |
|
|
|
|
|
11 |
COLORS = ['#4285f4', '#db4437', '#f4b400', '#0f9d58', '#e48ef1']
|
12 |
|
13 |
+
# Instantiate the model
|
14 |
+
pali_gemma_model = PaliGemmaModel()
|
15 |
+
|
16 |
##### Parse segmentation output tokens into masks
|
17 |
##### Also returns bounding boxes with their labels
|
18 |
|
19 |
def parse_segmentation(input_image, input_text, max_new_tokens=100):
|
20 |
+
out = pali_gemma_model.infer(image=input_image, text=input_text, max_new_tokens=max_new_tokens)
|
21 |
+
objs = extract_objs(out.lstrip("\n"), input_image.size[0], input_image.size[1], unique_labels=True)
|
22 |
+
labels = set(obj.get('name') for obj in objs if obj.get('name'))
|
23 |
+
color_map = {l: COLORS[i % len(COLORS)] for i, l in enumerate(labels)}
|
24 |
+
highlighted_text = [(obj['content'], obj.get('name')) for obj in objs]
|
25 |
+
annotated_img = (
|
26 |
+
input_image,
|
27 |
+
[
|
28 |
+
(
|
29 |
+
obj['mask'] if obj.get('mask') is not None else obj['xyxy'],
|
30 |
+
obj['name'] or '',
|
31 |
+
)
|
32 |
+
for obj in objs
|
33 |
+
if 'mask' in obj or 'xyxy' in obj
|
34 |
+
],
|
35 |
+
)
|
36 |
+
has_annotations = bool(annotated_img[1])
|
37 |
+
return annotated_img
|
38 |
|
39 |
INTRO_TEXT="🔬🧠 CellVision AI -- Intelligent Cell Imaging Analysis 🤖🧫"
|
40 |
IMAGE_PROMPT="""
|
|
|
43 |
"""
|
44 |
|
45 |
with gr.Blocks(css="style.css") as demo:
|
46 |
+
gr.Markdown(INTRO_TEXT)
|
47 |
+
with gr.Tab("Segment/Detect"):
|
48 |
+
with gr.Row():
|
49 |
+
with gr.Column():
|
50 |
+
image = gr.Image(type="pil")
|
51 |
+
seg_input = gr.Text(label="Entities to Segment/Detect")
|
52 |
+
|
53 |
+
with gr.Column():
|
54 |
+
annotated_image = gr.AnnotatedImage(label="Output")
|
55 |
+
|
56 |
+
seg_btn = gr.Button("Submit")
|
57 |
+
examples = [
|
58 |
+
["./examples/cart1.jpg", "segment cells"],
|
59 |
+
["./examples/cart1.jpg", "detect cells"],
|
60 |
+
["./examples/cart2.jpg", "segment cells"],
|
61 |
+
["./examples/cart2.jpg", "detect cells"],
|
62 |
+
["./examples/cart3.jpg", "segment cells"],
|
63 |
+
["./examples/cart3.jpg", "detect cells"]
|
64 |
+
]
|
65 |
+
gr.Examples(
|
66 |
+
examples=examples,
|
67 |
+
inputs=[image, seg_input],
|
68 |
+
)
|
69 |
+
seg_inputs = [
|
70 |
+
image,
|
71 |
+
seg_input,
|
72 |
+
]
|
73 |
+
seg_outputs = [
|
74 |
+
annotated_image
|
75 |
+
]
|
76 |
+
seg_btn.click(
|
77 |
+
fn=parse_segmentation,
|
78 |
+
inputs=seg_inputs,
|
79 |
+
outputs=seg_outputs,
|
80 |
+
)
|
81 |
+
with gr.Tab("Text Generation"):
|
82 |
with gr.Column():
|
83 |
+
image = gr.Image(type="pil")
|
84 |
+
text_input = gr.Text(label="Input Text")
|
85 |
+
text_output = gr.Text(label="Text Output")
|
86 |
+
chat_btn = gr.Button()
|
87 |
+
tokens = gr.Slider(
|
88 |
+
label="Max New Tokens",
|
89 |
+
info="Set to larger for longer generation.",
|
90 |
+
minimum=10,
|
91 |
+
maximum=100,
|
92 |
+
value=50,
|
93 |
+
step=10,
|
94 |
+
)
|
95 |
+
|
96 |
+
chat_inputs = [
|
97 |
+
image,
|
98 |
+
text_input,
|
99 |
+
tokens
|
100 |
]
|
101 |
+
chat_outputs = [
|
102 |
+
text_output
|
103 |
+
]
|
104 |
+
chat_btn.click(
|
105 |
+
fn=pali_gemma_model.infer,
|
106 |
+
inputs=chat_inputs,
|
107 |
+
outputs=chat_outputs,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
)
|
109 |
|
110 |
+
examples = [
|
111 |
+
["./examples/cart1.jpg", IMAGE_PROMPT],
|
112 |
+
["./examples/cart2.jpg", IMAGE_PROMPT],
|
113 |
+
["./examples/cart3.jpg", IMAGE_PROMPT]
|
114 |
]
|
115 |
+
gr.Examples(
|
116 |
+
examples=examples,
|
117 |
+
inputs=chat_inputs,
|
118 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
|
120 |
### Postprocessing Utils for Segmentation Tokens
|
121 |
### Segmentation tokens are passed to another VAE which decodes them to a mask
|
|
|
129 |
r'\s*([^;<>]+)? ?(?:; )?',
|
130 |
)
|
131 |
|
|
|
132 |
def _get_params(checkpoint):
|
133 |
+
"""Converts PyTorch checkpoint to Flax params."""
|
134 |
|
135 |
+
def transp(kernel):
|
136 |
+
return np.transpose(kernel, (2, 3, 1, 0))
|
137 |
|
138 |
+
def conv(name):
|
139 |
+
return {
|
140 |
+
'bias': checkpoint[name + '.bias'],
|
141 |
+
'kernel': transp(checkpoint[name + '.weight']),
|
142 |
+
}
|
143 |
+
|
144 |
+
def resblock(name):
|
145 |
+
return {
|
146 |
+
'Conv_0': conv(name + '.0'),
|
147 |
+
'Conv_1': conv(name + '.2'),
|
148 |
+
'Conv_2': conv(name + '.4'),
|
149 |
+
}
|
150 |
|
|
|
151 |
return {
|
152 |
+
'_embeddings': checkpoint['_vq_vae._embedding'],
|
153 |
+
'Conv_0': conv('decoder.0'),
|
154 |
+
'ResBlock_0': resblock('decoder.2.net'),
|
155 |
+
'ResBlock_1': resblock('decoder.3.net'),
|
156 |
+
'ConvTranspose_0': conv('decoder.4'),
|
157 |
+
'ConvTranspose_1': conv('decoder.6'),
|
158 |
+
'ConvTranspose_2': conv('decoder.8'),
|
159 |
+
'ConvTranspose_3': conv('decoder.10'),
|
160 |
+
'Conv_1': conv('decoder.12'),
|
161 |
}
|
162 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
163 |
def _quantized_values_from_codebook_indices(codebook_indices, embeddings):
|
164 |
+
batch_size, num_tokens = codebook_indices.shape
|
165 |
+
assert num_tokens == 16, codebook_indices.shape
|
166 |
+
unused_num_embeddings, embedding_dim = embeddings.shape
|
|
|
|
|
|
|
|
|
167 |
|
168 |
+
encodings = jnp.take(embeddings, codebook_indices.reshape((-1)), axis=0)
|
169 |
+
encodings = encodings.reshape((batch_size, 4, 4, embedding_dim))
|
170 |
+
return encodings
|
171 |
|
172 |
@functools.cache
|
173 |
def _get_reconstruct_masks():
|
174 |
+
"""Reconstructs masks from codebook indices.
|
175 |
+
Returns:
|
176 |
+
A function that expects indices shaped `[B, 16]` of dtype int32, each
|
177 |
+
ranging from 0 to 127 (inclusive), and that returns a decoded masks sized
|
178 |
+
`[B, 64, 64, 1]`, of dtype float32, in range [-1, 1].
|
179 |
+
"""
|
180 |
+
|
181 |
+
class ResBlock(nn.Module):
|
182 |
+
features: int
|
183 |
+
|
184 |
+
@nn.compact
|
185 |
+
def __call__(self, x):
|
186 |
+
original_x = x
|
187 |
+
x = nn.Conv(features=self.features, kernel_size=(3, 3), padding=1)(x)
|
188 |
+
x = nn.relu(x)
|
189 |
+
x = nn.Conv(features=self.features, kernel_size=(3, 3), padding=1)(x)
|
190 |
+
x = nn.relu(x)
|
191 |
+
x = nn.Conv(features=self.features, kernel_size=(1, 1), padding=0)(x)
|
192 |
+
return x + original_x
|
193 |
+
|
194 |
+
class Decoder(nn.Module):
|
195 |
+
"""Upscales quantized vectors to mask."""
|
196 |
+
|
197 |
+
@nn.compact
|
198 |
+
def __call__(self, x):
|
199 |
+
num_res_blocks = 2
|
200 |
+
dim = 128
|
201 |
+
num_upsample_layers = 4
|
202 |
+
|
203 |
+
x = nn.Conv(features=dim, kernel_size=(1, 1), padding=0)(x)
|
204 |
+
x = nn.relu(x)
|
205 |
+
|
206 |
+
for _ in range(num_res_blocks):
|
207 |
+
x = ResBlock(features=dim)(x)
|
208 |
+
|
209 |
+
for _ in range(num_upsample_layers):
|
210 |
+
x = nn.ConvTranspose(
|
211 |
+
features=dim,
|
212 |
+
kernel_size=(4, 4),
|
213 |
+
strides=(2, 2),
|
214 |
+
padding=2,
|
215 |
+
transpose_kernel=True,
|
216 |
+
)(x)
|
217 |
+
x = nn.relu(x)
|
218 |
+
dim //= 2
|
219 |
+
|
220 |
+
x = nn.Conv(features=1, kernel_size=(1, 1), padding=0)(x)
|
221 |
+
|
222 |
+
return x
|
223 |
+
|
224 |
+
def reconstruct_masks(codebook_indices):
|
225 |
+
quantized = _quantized_values_from_codebook_indices(
|
226 |
+
codebook_indices, params['_embeddings']
|
227 |
+
)
|
228 |
+
return Decoder().apply({'params': params}, quantized)
|
229 |
|
230 |
+
with open(_MODEL_PATH, 'rb') as f:
|
231 |
+
params = _get_params(dict(np.load(f)))
|
232 |
|
233 |
+
return jax.jit(reconstruct_masks, backend='cpu')
|
234 |
|
235 |
def extract_objs(text, width, height, unique_labels=False):
|
236 |
+
"""Returns objs for a string with "<loc>" and "<seg>" tokens."""
|
237 |
+
objs = []
|
238 |
+
seen = set()
|
239 |
+
while text:
|
240 |
+
m = _SEGMENT_DETECT_RE.match(text)
|
241 |
+
if not m:
|
242 |
+
break
|
243 |
+
print("m", m)
|
244 |
+
gs = list(m.groups())
|
245 |
+
before = gs.pop(0)
|
246 |
+
name = gs.pop()
|
247 |
+
y1, x1, y2, x2 = [int(x) / 1024 for x in gs[:4]]
|
248 |
+
|
249 |
+
y1, x1, y2, x2 = map(round, (y1*height, x1*width, y2*height, x2*width))
|
250 |
+
seg_indices = gs[4:20]
|
251 |
+
if seg_indices[0] is None:
|
252 |
+
mask = None
|
253 |
+
else:
|
254 |
+
seg_indices = np.array([int(x) for x in seg_indices], dtype=np.int32)
|
255 |
+
m64, = _get_reconstruct_masks()(seg_indices[None])[..., 0]
|
256 |
+
m64 = np.clip(np.array(m64) * 0.5 + 0.5, 0, 1)
|
257 |
+
m64 = PIL.Image.fromarray((m64 * 255).astype('uint8'))
|
258 |
+
mask = np.zeros([height, width])
|
259 |
+
if y2 > y1 and x2 > x1:
|
260 |
+
mask[y1:y2, x1:x2] = np.array(m64.resize([x2 - x1, y2 - y1])) / 255.0
|
261 |
+
|
262 |
+
content = m.group()
|
263 |
+
if before:
|
264 |
+
objs.append(dict(content=before))
|
265 |
+
content = content[len(before):]
|
266 |
+
while unique_labels and name in seen:
|
267 |
+
name = (name or '') + "'"
|
268 |
+
seen.add(name)
|
269 |
+
objs.append(dict(
|
270 |
+
content=content, xyxy=(x1, y1, x2, y2), mask=mask, name=name))
|
271 |
+
text = text[len(before) + len(content):]
|
272 |
+
|
273 |
+
if text:
|
274 |
+
objs.append(dict(content=text))
|
275 |
+
|
276 |
+
return objs
|
277 |
|
278 |
#########
|
279 |
|
280 |
if __name__ == "__main__":
|
281 |
+
demo.queue(max_size=10).launch(debug=True)
|