import os import time import gradio as gr from typing import * from pillow_heif import register_heif_opener register_heif_opener() import vision_agent as va from vision_agent.tools import register_tool from vision_agent.tools import load_image, owl_v2, overlay_bounding_boxes, save_image from huggingface_hub import login import spaces # Perform login using the token hf_token = os.getenv("HF_TOKEN") login(token=hf_token, add_to_git_credential=True) def detect_brain_tumor(image, debug: bool = False) -> str: """ Detects a brain tumor in the given image and saves the image with bounding boxes. Parameters: image: The input image (as a PIL Image or numpy array). debug (bool): Flag to enable logging for debugging purposes. Returns: str: Path to the saved output image. """ # Generate a unique output filename output_path = f"./output/tumor_detection_{int(time.time())}.jpg" # Step 1: Load the image (not needed if image is already a PIL Image or numpy array) # image = load_image(image_path) if debug: print(f"Image loaded") # Step 2: Detect brain tumor using owl_v2 prompt = "detect brain tumor" detections = owl_v2(prompt, image) if debug: print(f"Detections: {detections}") # Step 3: Overlay bounding boxes on the image image_with_bboxes = overlay_bounding_boxes(image, detections) if debug: print("Bounding boxes overlaid on the image") # Step 4: Save the resulting image save_image(image_with_bboxes, output_path) if debug: print(f"Image saved to {output_path}") return output_path # Example usage (uncomment to run): # detect_brain_tumor("/content/drive/MyDrive/kaggle/datasets/brain-tumor-image-dataset-semantic-segmentation_old/train_categories/1385_jpg.rf.3c67cb92e2922dba0e6dba86f69df40b.jpg", "/content/drive/MyDrive/kaggle/datasets/brain-tumor-image-dataset-semantic-segmentation_old/output/1385_jpg.rf.3c67cb92e2922dba0e6dba86f69df40b.jpg", debug=True) ######### INTRO_TEXT="# 🔬🧠 CellVision AI -- Intelligent Cell Imaging Analysis 🤖🧫" IMAGE_PROMPT="Are these cells healthy or cancerous?" with gr.Blocks(css="style.css") as demo: gr.Markdown(INTRO_TEXT) with gr.Tab("Agentic Detection"): with gr.Row(): with gr.Column(): image = gr.Image(type="pil") with gr.Column(): text_input = gr.Text(label="Input Text") text_output = gr.Text(label="Text Output") chat_btn = gr.Button() chat_inputs = [ image ] chat_outputs = [ text_output ] chat_btn.click( fn=detect_brain_tumor, inputs=chat_inputs, outputs=chat_outputs, ) examples = [["./examples/194_jpg.rf.3e3dd592d034bb5ee27a978553819f42.jpg", "./output/194_jpg.rf.3e3dd592d034bb5ee27a978553819f42.jpg"], ["./examples/239_jpg.rf.3dcc0799277fb78a2ab21db7761ccaeb.jpg", "./output/239_jpg.rf.3dcc0799277fb78a2ab21db7761ccaeb.jpg"], ["./examples/1385_jpg.rf.3c67cb92e2922dba0e6dba86f69df40b.jpg", "./output/1385_jpg.rf.3c67cb92e2922dba0e6dba86f69df40b.jpg"], ["./examples/1491_jpg.rf.3c658e83538de0fa5a3f4e13d7d85f12.jpg", "./output/1491_jpg.rf.3c658e83538de0fa5a3f4e13d7d85f12.jpg"], ["./examples/1550_jpg.rf.3d067be9580ec32dbee5a89c675d8459.jpg", "./output/1550_jpg.rf.3d067be9580ec32dbee5a89c675d8459.jpg"], ["./examples/2256_jpg.rf.3afd7903eaf3f3c5aa8da4bbb928bc19.jpg", "./output/2256_jpg.rf.3afd7903eaf3f3c5aa8da4bbb928bc19.jpg"], ["./examples/2871_jpg.rf.3b6eadfbb369abc2b3bcb52b406b74f2.jpg", "./output/2871_jpg.rf.3b6eadfbb369abc2b3bcb52b406b74f2.jpg"], ["./examples/2921_jpg.rf.3b952f91f27a6248091e7601c22323ad.jpg", "./output/2921_jpg.rf.3b952f91f27a6248091e7601c22323ad.jpg"], ] gr.Examples( examples=examples, inputs=chat_inputs, ) ######### if __name__ == "__main__": demo.queue(max_size=10).launch(debug=True)