|
import sys |
|
import os |
|
|
|
argv = os.environ.get('VALLE_ARGS', None) |
|
|
|
if argv: |
|
sys.argv = sys.argv + argv.split(" ") |
|
|
|
import re |
|
import math |
|
import argparse |
|
import random |
|
import tempfile |
|
import functools |
|
|
|
import torch |
|
import numpy as np |
|
|
|
import torchaudio |
|
import gradio as gr |
|
|
|
from pathlib import Path |
|
|
|
|
|
|
|
try: |
|
import spaces |
|
|
|
USING_SPACES = True |
|
spaces_zerogpu_decorator = spaces.GPU |
|
except Exception as e: |
|
USING_SPACES = False |
|
def spaces_zerogpu_decorator(func): |
|
return func |
|
|
|
|
|
if USING_SPACES: |
|
from vall_e.inference import TTS, cfg |
|
from vall_e.train import train |
|
from vall_e.utils import get_devices, setup_logging, timer |
|
from vall_e.utils.io import json_read, json_stringify |
|
from vall_e.emb.qnt import decode_to_wave |
|
from vall_e.data import get_lang_symmap, get_random_prompt |
|
from vall_e.models.arch import AVAILABLE_ATTENTIONS |
|
else: |
|
from .inference import TTS, cfg |
|
from .train import train |
|
from .utils import get_devices, setup_logging, timer |
|
from .utils.io import json_read, json_stringify |
|
from .emb.qnt import decode_to_wave |
|
from .data import get_lang_symmap, get_random_prompt |
|
from .models.arch import AVAILABLE_ATTENTIONS |
|
|
|
is_windows = sys.platform.startswith("win") |
|
|
|
tts = None |
|
|
|
layout = {} |
|
layout["inference_tts"] = {} |
|
layout["inference_stt"] = {} |
|
layout["training"] = {} |
|
layout["dataset"] = {} |
|
layout["settings"] = {} |
|
|
|
for k in layout.keys(): |
|
layout[k]["inputs"] = { "progress": None } |
|
layout[k]["outputs"] = {} |
|
layout[k]["buttons"] = {} |
|
|
|
|
|
def gradio_wrapper(inputs): |
|
def decorated(fun): |
|
@functools.wraps(fun) |
|
def wrapped_function(*args, **kwargs): |
|
for i, key in enumerate(inputs): |
|
kwargs[key] = args[i] |
|
try: |
|
return fun(**kwargs) |
|
except Exception as e: |
|
raise gr.Error(str(e)) |
|
return wrapped_function |
|
return decorated |
|
|
|
|
|
def get_model_paths( paths=[Path("./training/"), Path("./models/"), Path("./data/models/")] ): |
|
configs = [] |
|
|
|
for path in paths: |
|
if not path.exists(): |
|
continue |
|
|
|
for yaml in path.glob("**/*.yaml"): |
|
if "/logs/" in str(yaml): |
|
continue |
|
configs.append( yaml ) |
|
|
|
for sft in path.glob("**/*.sft"): |
|
if "/logs/" in str(sft): |
|
continue |
|
configs.append( sft ) |
|
|
|
if is_windows: |
|
configs = [ str(p) for p in configs ] |
|
|
|
return configs |
|
|
|
def get_dtypes(): |
|
return ["float32", "float16", "bfloat16", "float8_e5m2", "float8_e4m3fn", "auto"] |
|
|
|
def get_attentions(): |
|
return AVAILABLE_ATTENTIONS + ["auto"] |
|
|
|
|
|
def load_model( config, device, dtype, attention ): |
|
gr.Info(f"Loading: {config}") |
|
try: |
|
init_tts( config=Path(config), restart=True, device=device, dtype=dtype, attention=attention ) |
|
except Exception as e: |
|
raise gr.Error(e) |
|
gr.Info(f"Loaded model") |
|
|
|
def get_speakers(): |
|
return cfg.dataset.training |
|
|
|
def get_languages(): |
|
return get_lang_symmap().keys() |
|
|
|
|
|
def load_sample( speaker ): |
|
metadata_path = cfg.metadata_dir / f'{speaker}.json' |
|
metadata = json_read( metadata_path ) |
|
if not metadata: |
|
raise gr.Error(f"Metadata not found: {metadata_path}") |
|
|
|
key = random.choice( list(metadata.keys()) ) |
|
path = cfg.data_dir / speaker / f'{key}.enc' |
|
data = json_stringify( metadata[key], pretty=True ) |
|
wav, sr = None, None |
|
|
|
if path.exists(): |
|
artifact = np.load(path, allow_pickle=True)[()] |
|
codes = torch.from_numpy(artifact["codes"].astype(int))[0].t().to(dtype=torch.int16, device=cfg.device) |
|
wav, sr = decode_to_wave( codes ) |
|
wav = wav.squeeze(0).cpu().numpy() |
|
|
|
return data, (sr, wav) |
|
|
|
def init_tts(config=None, lora=None, restart=False, device="cuda", dtype="auto", attention=None): |
|
global tts |
|
|
|
if tts is not None: |
|
if not restart: |
|
return tts |
|
|
|
del tts |
|
tts = None |
|
|
|
parser = argparse.ArgumentParser(allow_abbrev=False, add_help=False) |
|
parser.add_argument("--yaml", type=Path, default=os.environ.get('VALLE_YAML', None)) |
|
parser.add_argument("--model", type=Path, default=os.environ.get('VALLE_MODEL', None)) |
|
parser.add_argument("--lora", type=Path, default=os.environ.get('VALLE_LORA', None)) |
|
parser.add_argument("--device", type=str, default=device) |
|
parser.add_argument("--amp", action="store_true") |
|
parser.add_argument("--dtype", type=str, default=dtype) |
|
parser.add_argument("--attention", type=str, default=attention) |
|
args, unknown = parser.parse_known_args() |
|
|
|
if config: |
|
if config.suffix == ".yaml" and not args.yaml: |
|
args.yaml = config |
|
elif config.suffix == ".sft" and not args.model: |
|
args.model = config |
|
|
|
if lora and not args.lora: |
|
args.lora = lora |
|
|
|
if args.yaml: |
|
config = args.yaml |
|
elif args.model: |
|
config = args.model |
|
|
|
if args.lora: |
|
lora = args.lora |
|
|
|
tts = TTS( config=config, lora=args.lora, device=args.device, dtype=args.dtype if args.dtype != "auto" else None, amp=args.amp, attention=args.attention ) |
|
return tts |
|
|
|
@spaces_zerogpu_decorator |
|
@gradio_wrapper(inputs=layout["inference_tts"]["inputs"].keys()) |
|
def do_inference_tts( progress=gr.Progress(track_tqdm=True), *args, **kwargs ): |
|
if not cfg.models: |
|
raise Exception("No model loaded.") |
|
|
|
if kwargs.pop("dynamic-sampling", False): |
|
kwargs['min-ar-temperature'] = 0.01 if kwargs['ar-temperature'] > 0.01 else 0.0 |
|
kwargs['min-nar-temperature'] = 0.0 |
|
else: |
|
kwargs['min-ar-temperature'] = -1 |
|
kwargs['min-nar-temperature'] = -1 |
|
|
|
parser = argparse.ArgumentParser(allow_abbrev=False, add_help=False) |
|
|
|
parser.add_argument("--text", type=str, default=kwargs["text"]) |
|
parser.add_argument("--task", type=str, default="tts") |
|
parser.add_argument("--modality", type=str, default=kwargs["modality"]) |
|
parser.add_argument("--references", type=str, default=kwargs["reference"]) |
|
parser.add_argument("--language", type=str, default=kwargs["language"]) |
|
parser.add_argument("--input-prompt-length", type=float, default=kwargs["input-prompt-length"]) |
|
parser.add_argument("--input-prompt-prefix", action='store_true', default=kwargs["input-prompt-prefix"]) |
|
parser.add_argument("--max-duration", type=int, default=int(kwargs["max-duration"]*cfg.dataset.frames_per_second)) |
|
parser.add_argument("--max-levels", type=int, default=kwargs["max-levels"]) |
|
parser.add_argument("--max-steps", type=int, default=kwargs["max-steps"]) |
|
parser.add_argument("--ar-temperature", type=float, default=kwargs["ar-temperature"]) |
|
parser.add_argument("--nar-temperature", type=float, default=kwargs["nar-temperature"]) |
|
parser.add_argument("--min-ar-temperature", type=float, default=kwargs["min-ar-temperature"]) |
|
parser.add_argument("--min-nar-temperature", type=float, default=kwargs["min-nar-temperature"]) |
|
parser.add_argument("--prefix-silence", type=float, default=kwargs["prefix-silence"]) |
|
parser.add_argument("--top-p", type=float, default=kwargs["top-p"]) |
|
parser.add_argument("--top-k", type=int, default=kwargs["top-k"]) |
|
parser.add_argument("--top-no", type=float, default=kwargs["top-no"]) |
|
parser.add_argument("--min-p", type=float, default=kwargs["min-p"]) |
|
parser.add_argument("--repetition-penalty", type=float, default=kwargs["repetition-penalty"]) |
|
parser.add_argument("--repetition-penalty-decay", type=float, default=kwargs["repetition-penalty-decay"]) |
|
parser.add_argument("--length-penalty", type=float, default=kwargs["length-penalty"]) |
|
parser.add_argument("--beam-width", type=int, default=kwargs["beam-width"]) |
|
parser.add_argument("--mirostat-tau", type=float, default=kwargs["mirostat-tau"]) |
|
parser.add_argument("--mirostat-eta", type=float, default=kwargs["mirostat-eta"]) |
|
parser.add_argument("--dry-multiplier", type=float, default=kwargs["dry-multiplier"]) |
|
parser.add_argument("--dry-base", type=float, default=kwargs["dry-base"]) |
|
parser.add_argument("--dry-allowed-length", type=int, default=kwargs["dry-allowed-length"]) |
|
parser.add_argument("--entropix-sampling", action="store_true") |
|
parser.add_argument("--layer-skip", action="store_true") |
|
parser.add_argument("--layer-skip-exit-layer", type=int, default=kwargs["layer-skip-exit-layer"]) |
|
parser.add_argument("--layer-skip-entropy-threshold", type=int, default=kwargs["layer-skip-entropy-threshold"]) |
|
parser.add_argument("--layer-skip-varentropy-threshold", type=int, default=kwargs["layer-skip-varentropy-threshold"]) |
|
parser.add_argument("--refine-on-stop", action="store_true") |
|
parser.add_argument("--denoise-start", type=float, default=0.0) |
|
parser.add_argument("--cfg-strength", type=float, default=kwargs['cfg-strength']) |
|
parser.add_argument("--cfg-rescale", type=float, default=kwargs['cfg-rescale']) |
|
args, unknown = parser.parse_known_args() |
|
|
|
if is_windows: |
|
tmp = tempfile.NamedTemporaryFile(suffix='.wav', delete=False) |
|
else: |
|
tmp = tempfile.NamedTemporaryFile(suffix='.wav') |
|
|
|
""" |
|
if not args.references: |
|
raise Exception("No reference audio provided.") |
|
""" |
|
|
|
if kwargs.pop("entropix-sampling", False): |
|
args.entropix_sampling = True |
|
|
|
if kwargs.pop("layer-skip", False): |
|
args.layer_skip = True |
|
|
|
if kwargs.pop("refine-on-stop", False): |
|
args.refine_on_stop = True |
|
|
|
tts = init_tts() |
|
|
|
gr.Info(f"Inferencing... (Modality: {tts.modality(args.modality.lower())})") |
|
|
|
sampling_kwargs = dict( |
|
max_steps=args.max_steps, |
|
max_levels=args.max_levels, |
|
max_duration=args.max_duration, |
|
ar_temperature=args.ar_temperature, nar_temperature=args.nar_temperature, |
|
min_ar_temperature=args.min_ar_temperature, min_nar_temperature=args.min_nar_temperature, |
|
top_p=args.top_p, top_k=args.top_k, min_p=args.min_p, top_no=args.top_no, |
|
repetition_penalty=args.repetition_penalty, repetition_penalty_decay=args.repetition_penalty_decay, |
|
length_penalty=args.length_penalty, |
|
beam_width=args.beam_width, |
|
mirostat_tau=args.mirostat_tau, mirostat_eta=args.mirostat_eta, |
|
dry_multiplier=args.dry_multiplier, dry_base=args.dry_base, dry_allowed_length=args.dry_allowed_length, |
|
entropix_sampling=args.entropix_sampling, |
|
layer_skip=args.layer_skip, |
|
layer_skip_exit_layer=args.layer_skip_exit_layer, |
|
layer_skip_entropy_threshold=args.layer_skip_entropy_threshold, |
|
layer_skip_varentropy_threshold=args.layer_skip_varentropy_threshold, |
|
refine_on_stop=args.refine_on_stop, |
|
denoise_start=args.denoise_start, |
|
prefix_silence=args.prefix_silence, |
|
input_prompt_prefix=args.input_prompt_prefix, |
|
input_prompt_length=args.input_prompt_length, |
|
cfg_strength=args.cfg_strength, |
|
cfg_rescale=args.cfg_rescale, |
|
) |
|
|
|
with timer("Inferenced in", callback=lambda msg: gr.Info( msg )) as t: |
|
wav, sr = tts.inference( |
|
text=args.text, |
|
language=args.language, |
|
task=args.task, |
|
modality=args.modality.lower(), |
|
references=args.references.split(";") if args.references is not None else [], |
|
**sampling_kwargs, |
|
) |
|
|
|
wav = wav.squeeze(0).cpu().numpy() |
|
return (sr, wav) |
|
|
|
@gradio_wrapper(inputs=layout["inference_stt"]["inputs"].keys()) |
|
def do_inference_stt( progress=gr.Progress(track_tqdm=True), *args, **kwargs ): |
|
if not cfg.models: |
|
raise Exception("No model loaded.") |
|
|
|
if kwargs.pop("dynamic-sampling", False): |
|
kwargs['min-ar-temperature'] = 0.85 if kwargs['ar-temperature'] > 0.85 else 0.0 |
|
else: |
|
kwargs['min-ar-temperature'] = -1 |
|
|
|
parser = argparse.ArgumentParser(allow_abbrev=False, add_help=False) |
|
|
|
parser.add_argument("--task", type=str, default="tts") |
|
parser.add_argument("--references", type=str, default=kwargs["reference"]) |
|
parser.add_argument("--max-duration", type=int, default=0) |
|
parser.add_argument("--language", type=str, default=kwargs["language"]) |
|
parser.add_argument("--ar-temperature", type=float, default=kwargs["ar-temperature"]) |
|
parser.add_argument("--min-ar-temperature", type=float, default=kwargs["min-ar-temperature"]) |
|
parser.add_argument("--top-p", type=float, default=kwargs["top-p"]) |
|
parser.add_argument("--top-k", type=int, default=kwargs["top-k"]) |
|
parser.add_argument("--min-p", type=float, default=kwargs["min-p"]) |
|
parser.add_argument("--repetition-penalty", type=float, default=kwargs["repetition-penalty"]) |
|
parser.add_argument("--repetition-penalty-decay", type=float, default=kwargs["repetition-penalty-decay"]) |
|
parser.add_argument("--length-penalty", type=float, default=kwargs["length-penalty"]) |
|
parser.add_argument("--beam-width", type=int, default=kwargs["beam-width"]) |
|
parser.add_argument("--mirostat-tau", type=float, default=kwargs["mirostat-tau"]) |
|
parser.add_argument("--mirostat-eta", type=float, default=kwargs["mirostat-eta"]) |
|
parser.add_argument("--dry-multiplier", type=float, default=kwargs["dry-multiplier"]) |
|
parser.add_argument("--dry-base", type=float, default=kwargs["dry-base"]) |
|
parser.add_argument("--dry-allowed-length", type=int, default=kwargs["dry-allowed-length"]) |
|
args, unknown = parser.parse_known_args() |
|
|
|
""" |
|
if not args.references: |
|
raise Exception("No reference audio provided.") |
|
""" |
|
|
|
args.references = args.references.split(";") if args.references is not None else [] |
|
if args.max_duration == 0: |
|
for i, path in enumerate( args.references ): |
|
metadata = torchaudio.info(path) |
|
duration = metadata.num_frames / metadata.sample_rate |
|
args.max_duration += duration |
|
args.max_duration = math.floor( args.max_duration * 20 ) |
|
|
|
if kwargs.pop("entropix-sampling", False): |
|
args.entropix_sampling = True |
|
|
|
tts = init_tts() |
|
|
|
sampling_kwargs = dict( |
|
max_duration=args.max_duration, |
|
ar_temperature=args.ar_temperature, |
|
min_ar_temperature=args.min_ar_temperature, |
|
top_p=args.top_p, top_k=args.top_k, min_p=args.min_p, |
|
repetition_penalty=args.repetition_penalty, repetition_penalty_decay=args.repetition_penalty_decay, |
|
length_penalty=args.length_penalty, |
|
beam_width=args.beam_width, |
|
mirostat_tau=args.mirostat_tau, mirostat_eta=args.mirostat_eta, |
|
dry_multiplier=args.dry_multiplier, dry_base=args.dry_base, dry_allowed_length=args.dry_allowed_length, |
|
) |
|
|
|
gr.Info("Inferencing...") |
|
with timer("Inferenced in") as t: |
|
text = tts.inference( |
|
text="", |
|
language=args.language, |
|
task="stt", |
|
references=args.references, |
|
**sampling_kwargs, |
|
) |
|
|
|
return text |
|
|
|
""" |
|
@gradio_wrapper(inputs=layout["training"]["inputs"].keys()) |
|
def do_training( progress=gr.Progress(track_tqdm=True), *args, **kwargs ): |
|
while True: |
|
metrics = next(it) |
|
yield metrics |
|
""" |
|
|
|
|
|
parser = argparse.ArgumentParser(allow_abbrev=False) |
|
parser.add_argument("--yaml", type=Path, default=os.environ.get('VALLE_YAML', None)) |
|
parser.add_argument("--model", type=Path, default=os.environ.get('VALLE_MODEL', None)) |
|
parser.add_argument("--listen", default=None, help="Path for Gradio to listen on") |
|
parser.add_argument("--share", action="store_true") |
|
parser.add_argument("--render_markdown", action="store_true", default="VALLE_YAML" in os.environ) |
|
args, unknown = parser.parse_known_args() |
|
|
|
args.listen_host = None |
|
args.listen_port = None |
|
args.listen_path = None |
|
if args.listen: |
|
try: |
|
match = re.findall(r"^(?:(.+?):(\d+))?(\/.*?)?$", args.listen)[0] |
|
|
|
args.listen_host = match[0] if match[0] != "" else "127.0.0.1" |
|
args.listen_port = match[1] if match[1] != "" else None |
|
args.listen_path = match[2] if match[2] != "" else "/" |
|
except Exception as e: |
|
pass |
|
|
|
if args.listen_port is not None: |
|
args.listen_port = int(args.listen_port) |
|
if args.listen_port == 0: |
|
args.listen_port = None |
|
|
|
|
|
ui = gr.Blocks() |
|
with ui: |
|
with gr.Tab("Inference"): |
|
with gr.Tab("Text-to-Speech"): |
|
with gr.Row(): |
|
with gr.Column(scale=8): |
|
layout["inference_tts"]["inputs"]["text"] = gr.Textbox(lines=5, value=get_random_prompt, label="Input Prompt") |
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
layout["inference_tts"]["inputs"]["reference"] = gr.Audio(label="Audio Input", sources=["upload"], type="filepath") |
|
|
|
layout["inference_tts"]["outputs"]["output"] = gr.Audio(label="Output") |
|
layout["inference_tts"]["buttons"]["inference"] = gr.Button(value="Inference") |
|
with gr.Column(scale=7): |
|
with gr.Tab("Basic Settings"): |
|
with gr.Row(): |
|
layout["inference_tts"]["inputs"]["max-duration"] = gr.Slider(value=12, minimum=1, maximum=32, step=0.1, label="Maximum Duration", info="Limits how many steps to perform in the AR pass.") |
|
layout["inference_tts"]["inputs"]["max-steps"] = gr.Slider(value=50, minimum=1, maximum=200, step=1, label="Max Steps (NAR-len)", info="Limits how many steps to perform in the NAR-len (demask) pass.") |
|
layout["inference_tts"]["inputs"]["input-prompt-length"] = gr.Slider(value=5.0, minimum=0.0, maximum=12.0, step=0.05, label="Input Prompt Repeat/Trim Length", info="Repeats and trims the input prompt down to X seconds. Set 0 to disable.") |
|
with gr.Row(): |
|
layout["inference_tts"]["inputs"]["ar-temperature"] = gr.Slider(value=1.0, minimum=0.0, maximum=1.5, step=0.05, label="Temperature (AR/NAR-len)", info="Modifies the randomness from the samples in the AR/NAR-len. (0 to greedy* sample)") |
|
layout["inference_tts"]["inputs"]["nar-temperature"] = gr.Slider(value=0.0, minimum=0.0, maximum=1.5, step=0.05, label="Temperature (NAR)", info="Modifies the randomness from the samples in the NAR. (0 to greedy sample)") |
|
layout["inference_tts"]["inputs"]["modality"] = gr.Dropdown(value="Auto", choices=["Auto", "AR+NAR", "NAR-len"], label="Modality", info="Whether to inference with the AR+NAR or through the NAR-len.") |
|
with gr.Row(): |
|
layout["inference_tts"]["inputs"]["cfg-strength"] = gr.Slider(value=1.0, minimum=0.0, maximum=14.0, step=0.05, label="CFG Strength", info="Classifier Free Guidance scale (AR needs 1, NAR-len needs 3).") |
|
layout["inference_tts"]["inputs"]["cfg-rescale"] = gr.Slider(value=0.75, minimum=0.0, maximum=1.0, step=0.05, label="CFG Rescale (Phi)", info="Factor when rescaling for Classifier Free Guidance (0 to disable).") |
|
layout["inference_tts"]["inputs"]["language"] = gr.Dropdown(choices=get_languages(), label="Language", value="en") |
|
with gr.Tab("Sampler Settings"): |
|
with gr.Row(): |
|
layout["inference_tts"]["inputs"]["top-p"] = gr.Slider(value=1.0, minimum=0.0, maximum=1.0, step=0.05, label="Top P", info=r"Limits the samples that are outside the top P% of probabilities.") |
|
layout["inference_tts"]["inputs"]["top-k"] = gr.Slider(value=0, minimum=0, maximum=1024, step=1, label="Top K", info="Limits the samples to the top K of probabilities.") |
|
layout["inference_tts"]["inputs"]["top-no"] = gr.Slider(value=0, minimum=0, maximum=2, step=0.05, label="Top-nσ", info="Performs top-nσ logits processing.") |
|
layout["inference_tts"]["inputs"]["min-p"] = gr.Slider(value=0.0, minimum=0.0, maximum=1.0, step=0.05, label="Min P", info="Filter out logits lower than this value.") |
|
with gr.Row(): |
|
layout["inference_tts"]["inputs"]["repetition-penalty"] = gr.Slider(value=1.0, minimum=0.0, maximum=5.0, step=0.05, label="Repetition Penalty", info="Incurs a penalty to tokens based on how often they appear in a sequence.") |
|
layout["inference_tts"]["inputs"]["repetition-penalty-decay"] = gr.Slider(value=0.0, minimum=-2.0, maximum=2.0, step=0.05, label="Repetition Penalty Length Decay", info="Modifies the reptition penalty based on how far back in time the token appeared in the sequence.") |
|
layout["inference_tts"]["inputs"]["length-penalty"] = gr.Slider(value=0.0, minimum=-2.0, maximum=2.0, step=0.05, label="Length Penalty", info="(AR only) Modifies the probability of a stop token based on the current length of the sequence.") |
|
with gr.Row(): |
|
layout["inference_tts"]["inputs"]["mirostat-tau"] = gr.Slider(value=0.0, minimum=0.0, maximum=8.0, step=0.05, label="Mirostat τ (Tau)", info="The \"surprise\" value when performing mirostat sampling. 0 to disable.") |
|
layout["inference_tts"]["inputs"]["mirostat-eta"] = gr.Slider(value=0.0, minimum=0.0, maximum=2.0, step=0.05, label="Mirostat η (Eta)", info="The \"learning rate\" during mirostat sampling applied to the maximum surprise.") |
|
with gr.Row(): |
|
layout["inference_tts"]["inputs"]["dry-multiplier"] = gr.Slider(value=0.0, minimum=0.0, maximum=8.0, step=0.05, label="DRY Multiplier", info="The multiplying factor for the DRY score penalty (0 to disable DRY sampling).") |
|
layout["inference_tts"]["inputs"]["dry-base"] = gr.Slider(value=1.75, minimum=0.0, maximum=8.0, step=0.05, label="DRY Base", info="The base of the exponent in the DRY score penalty") |
|
layout["inference_tts"]["inputs"]["dry-allowed-length"] = gr.Slider(value=2, minimum=0, maximum=75, step=1, label="Allowed Length", info="The maximimum length a token can be to perform DRY penalty with.") |
|
with gr.Tab("Experimental Settings", visible=cfg.experimental): |
|
with gr.Row(): |
|
layout["inference_tts"]["inputs"]["max-levels"] = gr.Slider(value=7, minimum=0, maximum=7, step=1, label="Max NAR Levels", info="Limits how many steps to perform in the NAR pass.") |
|
layout["inference_tts"]["inputs"]["beam-width"] = gr.Slider(value=0, minimum=0, maximum=32, step=1, label="Beam Width", info="Number of branches to search through for beam search sampling.") |
|
layout["inference_tts"]["inputs"]["prefix-silence"] = gr.Slider(value=0.0, minimum=0.0, maximum=1.0, step=0.05, label="Silence Prefix Duration", info="Amount of silence to prefix to the output response before beginning inference.") |
|
with gr.Row(): |
|
layout["inference_tts"]["inputs"]["input-prompt-prefix"] = gr.Checkbox(label="Input Prompt as Prefix", info="Treats the input prompt clip as the prefix of the generated sequence.") |
|
layout["inference_tts"]["inputs"]["dynamic-sampling"] = gr.Checkbox(label="Dynamic Temperature", info="Dynamically adjusts the temperature based on the highest confident predicted token per sampling step.") |
|
layout["inference_tts"]["inputs"]["entropix-sampling"] = gr.Checkbox(label="Entropix Sampling", info="Dynamically samples based on entropy/varentropy values from the logits / attention scores.") |
|
layout["inference_tts"]["inputs"]["refine-on-stop"] = gr.Checkbox(label="Refine on <stop>", info="Uses the last step's logits for the AR sequence instead.") |
|
with gr.Row(visible=False): |
|
layout["inference_tts"]["inputs"]["layer-skip"] = gr.Checkbox(label="Layer Skip", info="Performs self-speculative early exit 'sampling'") |
|
layout["inference_tts"]["inputs"]["layer-skip-exit-layer"] = gr.Slider(value=11, minimum=0, maximum=11, step=1, label="Layer Skip Exit Layer", info="Maximum model layer to exit early from.") |
|
layout["inference_tts"]["inputs"]["layer-skip-entropy-threshold"] = gr.Slider(value=0.1, minimum=0, maximum=1.0, step=0.01, label="Layer Skip Entropy Threshold", info="Entropy threshold for early-exit") |
|
layout["inference_tts"]["inputs"]["layer-skip-varentropy-threshold"] = gr.Slider(value=0.1, minimum=0, maximum=1.0, step=0.01, label="Layer Skip Varentropy Threshold", info="Varentropy threshold for early-exit") |
|
|
|
|
|
layout["inference_tts"]["buttons"]["inference"].click( |
|
fn=do_inference_tts, |
|
inputs=[ x for x in layout["inference_tts"]["inputs"].values() if x is not None], |
|
outputs=[ x for x in layout["inference_tts"]["outputs"].values() if x is not None] |
|
) |
|
|
|
with gr.Tab("Speech to Text"): |
|
with gr.Row(): |
|
with gr.Column(scale=8): |
|
layout["inference_stt"]["outputs"]["ouput"] = gr.Textbox(lines=1, label="Output Transcription") |
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
layout["inference_stt"]["inputs"]["reference"] = gr.Audio(label="Audio Input", sources=["upload"], type="filepath") |
|
|
|
layout["inference_stt"]["buttons"]["inference"] = gr.Button(value="Inference") |
|
with gr.Column(scale=7): |
|
with gr.Tab("Basic Settings"): |
|
with gr.Row(): |
|
layout["inference_stt"]["inputs"]["ar-temperature"] = gr.Slider(value=0.0, minimum=0.0, maximum=1.5, step=0.05, label="Temperature (AR)", info="Modifies the randomness from the samples in the AR. (0 to greedy sample)") |
|
with gr.Row(): |
|
layout["inference_stt"]["inputs"]["dynamic-sampling"] = gr.Checkbox(label="Dynamic Temperature", info="Dynamically adjusts the temperature based on the highest confident predicted token per sampling step.") |
|
layout["inference_stt"]["inputs"]["language"] = gr.Dropdown(choices=get_languages(), label="Language", value="en") |
|
with gr.Tab("Sampler Settings"): |
|
with gr.Row(): |
|
layout["inference_stt"]["inputs"]["top-p"] = gr.Slider(value=1.0, minimum=0.0, maximum=1.0, step=0.05, label="Top P", info=r"Limits the samples that are outside the top P% of probabilities.") |
|
layout["inference_stt"]["inputs"]["top-k"] = gr.Slider(value=0, minimum=0, maximum=1024, step=1, label="Top K", info="Limits the samples to the top K of probabilities.") |
|
layout["inference_stt"]["inputs"]["min-p"] = gr.Slider(value=0.0, minimum=0.0, maximum=1.0, step=0.05, label="Min P") |
|
layout["inference_stt"]["inputs"]["beam-width"] = gr.Slider(value=0, minimum=0, maximum=32, step=1, label="Beam Width", info="Number of branches to search through for beam search sampling.") |
|
with gr.Row(): |
|
layout["inference_stt"]["inputs"]["repetition-penalty"] = gr.Slider(value=1.0, minimum=-2.0, maximum=2.0, step=0.05, label="Repetition Penalty", info="Incurs a penalty to tokens based on how often they appear in a sequence.") |
|
layout["inference_stt"]["inputs"]["repetition-penalty-decay"] = gr.Slider(value=0.0, minimum=-2.0, maximum=2.0, step=0.05, label="Repetition Penalty Length Decay", info="Modifies the reptition penalty based on how far back in time the token appeared in the sequence.") |
|
layout["inference_stt"]["inputs"]["length-penalty"] = gr.Slider(value=0.0, minimum=-2.0, maximum=2.0, step=0.05, label="Length Penalty", info="(AR only) Modifies the probability of a stop token based on the current length of the sequence.") |
|
with gr.Row(): |
|
layout["inference_stt"]["inputs"]["mirostat-tau"] = gr.Slider(value=0.0, minimum=0.0, maximum=8.0, step=0.05, label="Mirostat τ (Tau)", info="The \"surprise\" value when performing mirostat sampling. 0 to disable.") |
|
layout["inference_stt"]["inputs"]["mirostat-eta"] = gr.Slider(value=0.0, minimum=0.0, maximum=2.0, step=0.05, label="Mirostat η (Eta)", info="The \"learning rate\" during mirostat sampling applied to the maximum surprise.") |
|
with gr.Row(): |
|
layout["inference_stt"]["inputs"]["dry-multiplier"] = gr.Slider(value=0.0, minimum=0.0, maximum=8.0, step=0.05, label="DRY Multiplier", info="The multiplying factor for the DRY score penalty (0 to disable DRY sampling).") |
|
layout["inference_stt"]["inputs"]["dry-base"] = gr.Slider(value=1.75, minimum=0.0, maximum=8.0, step=0.05, label="DRY Base", info="The base of the exponent in the DRY score penalty") |
|
layout["inference_stt"]["inputs"]["dry-allowed-length"] = gr.Slider(value=2, minimum=0, maximum=75, step=1, label="Allowed Length", info="The maximimum length a token can be to perform DRY penalty with.") |
|
|
|
layout["inference_stt"]["buttons"]["inference"].click( |
|
fn=do_inference_stt, |
|
inputs=[ x for x in layout["inference_stt"]["inputs"].values() if x is not None], |
|
outputs=[ x for x in layout["inference_stt"]["outputs"].values() if x is not None] |
|
) |
|
|
|
|
|
""" |
|
with gr.Tab("Training"): |
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
layout["training"]["outputs"]["console"] = gr.Textbox(lines=8, label="Console Log") |
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
layout["training"]["buttons"]["train"] = gr.Button(value="Train") |
|
|
|
layout["training"]["buttons"]["train"].click( |
|
fn=do_training, |
|
outputs=[ x for x in layout["training"]["outputs"].values() if x is not None], |
|
) |
|
""" |
|
|
|
if not USING_SPACES: |
|
with gr.Tab("Dataset"): |
|
with gr.Row(): |
|
with gr.Column(scale=7): |
|
layout["dataset"]["outputs"]["transcription"] = gr.Textbox(lines=5, label="Sample Metadata") |
|
with gr.Column(scale=1): |
|
layout["dataset"]["inputs"]["speaker"] = gr.Dropdown(choices=get_speakers(), label="Speakers") |
|
layout["dataset"]["outputs"]["audio"] = gr.Audio(label="Output") |
|
layout["dataset"]["buttons"]["sample"] = gr.Button(value="Sample") |
|
|
|
layout["dataset"]["buttons"]["sample"].click( |
|
fn=load_sample, |
|
inputs=[ x for x in layout["dataset"]["inputs"].values() if x is not None], |
|
outputs=[ x for x in layout["dataset"]["outputs"].values() if x is not None], |
|
) |
|
|
|
if not USING_SPACES: |
|
with gr.Tab("Settings"): |
|
with gr.Row(): |
|
with gr.Column(scale=7): |
|
with gr.Row(): |
|
layout["settings"]["inputs"]["models"] = gr.Dropdown(choices=get_model_paths(), value=args.yaml or args.model, label="Model") |
|
layout["settings"]["inputs"]["device"] = gr.Dropdown(choices=get_devices(), value="cuda:0", label="Device") |
|
layout["settings"]["inputs"]["dtype"] = gr.Dropdown(choices=get_dtypes(), value="auto", label="Precision") |
|
layout["settings"]["inputs"]["attentions"] = gr.Dropdown(choices=get_attentions(), value="auto", label="Attentions") |
|
with gr.Column(scale=1): |
|
layout["settings"]["buttons"]["load"] = gr.Button(value="Load Model") |
|
|
|
layout["settings"]["buttons"]["load"].click( |
|
fn=load_model, |
|
inputs=[ x for x in layout["settings"]["inputs"].values() if x is not None], |
|
outputs=[ x for x in layout["settings"]["outputs"].values() if x is not None], |
|
) |
|
|
|
if os.path.exists("README.md") and args.render_markdown: |
|
md = open("README.md", "r", encoding="utf-8").read() |
|
|
|
if md.startswith("---\n"): |
|
md = "".join(md.split("---")[2:]) |
|
gr.Markdown(md) |
|
|
|
def start( lock=True ): |
|
setup_logging() |
|
|
|
if not USING_SPACES: |
|
ui.queue(max_size=8) |
|
ui.launch(share=args.share, server_name=args.listen_host, server_port=args.listen_port, prevent_thread_lock=not lock) |
|
else: |
|
ui.queue().launch() |
|
|
|
if __name__ == "__main__": |
|
start() |