mrq
commited on
Commit
•
9b608ae
1
Parent(s):
7e90ffa
- app.py +39 -35
- requirements.txt +1 -1
app.py
CHANGED
@@ -122,7 +122,7 @@ def get_speakers():
|
|
122 |
return cfg.dataset.training
|
123 |
|
124 |
def get_languages():
|
125 |
-
return get_lang_symmap().keys()
|
126 |
|
127 |
#@gradio_wrapper(inputs=layout["dataset"]["inputs"].keys())
|
128 |
def load_sample( speaker ):
|
@@ -265,6 +265,9 @@ def do_inference_tts( progress=gr.Progress(track_tqdm=True), *args, **kwargs ):
|
|
265 |
elif args.split_text_by == "none":
|
266 |
args.split_text_by = None
|
267 |
|
|
|
|
|
|
|
268 |
tts = init_tts()
|
269 |
|
270 |
gr.Info(f"Inferencing... (Modality: {tts.modality(args.modality.lower())})")
|
@@ -437,54 +440,55 @@ with ui:
|
|
437 |
with gr.Column(scale=7):
|
438 |
with gr.Tab("Basic Settings"):
|
439 |
with gr.Row():
|
440 |
-
layout["inference_tts"]["inputs"]["max-
|
441 |
-
layout["inference_tts"]["inputs"]["max-
|
442 |
-
layout["inference_tts"]["inputs"]["input-prompt-length"] = gr.Slider(value=
|
443 |
with gr.Row():
|
444 |
-
layout["inference_tts"]["inputs"]["
|
445 |
-
layout["inference_tts"]["inputs"]["
|
446 |
-
layout["inference_tts"]["inputs"]["modality"] = gr.Dropdown(value="Auto", choices=["Auto", "AR+NAR", "NAR-len"], label="Modality", info="Whether to inference with the AR+NAR or through the NAR-len.")
|
447 |
with gr.Row():
|
448 |
-
layout["inference_tts"]["inputs"]["
|
449 |
-
layout["inference_tts"]["inputs"]["cfg-rescale"] = gr.Slider(value=0.75, minimum=0.0, maximum=1.0, step=0.05, label="CFG Rescale (Phi)", info="Factor when rescaling for Classifier Free Guidance (0 to disable).")
|
450 |
-
layout["inference_tts"]["inputs"]["language"] = gr.Dropdown(choices=get_languages(), label="Language (Output)", value="en", info="Target language/accent to output.")
|
451 |
-
layout["inference_tts"]["inputs"]["text-language"] = gr.Dropdown(choices=get_languages(), label="Language (Text)", value="en", info="Language the input text is in.")
|
452 |
-
with gr.Row():
|
453 |
-
layout["inference_tts"]["inputs"]["split-text-by"] = gr.Dropdown(choices=["sentences", "lines"], label="Text Delimiter", info="Splits the text into pieces.", value="sentences")
|
454 |
layout["inference_tts"]["inputs"]["context-history"] = gr.Slider(value=0, minimum=0, maximum=4, step=1, label="(Rolling) Context History", info="How many prior lines to serve as the context/prefix (0 to disable).")
|
455 |
with gr.Tab("Sampler Settings"):
|
456 |
with gr.Row():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
457 |
layout["inference_tts"]["inputs"]["top-p"] = gr.Slider(value=1.0, minimum=0.0, maximum=1.0, step=0.05, label="Top P", info=r"Limits the samples that are outside the top P% of probabilities.")
|
458 |
layout["inference_tts"]["inputs"]["top-k"] = gr.Slider(value=0, minimum=0, maximum=1024, step=1, label="Top K", info="Limits the samples to the top K of probabilities.")
|
459 |
-
layout["inference_tts"]["inputs"]["top-no"] = gr.Slider(value=0, minimum=0, maximum=2, step=0.
|
460 |
-
layout["inference_tts"]["inputs"]["min-p"] = gr.Slider(value=0.0, minimum=0.0, maximum=1.0, step=0.05, label="Min P", info="Filter out logits lower than this value.")
|
461 |
with gr.Row():
|
462 |
layout["inference_tts"]["inputs"]["repetition-penalty"] = gr.Slider(value=1.0, minimum=0.0, maximum=5.0, step=0.05, label="Repetition Penalty", info="Incurs a penalty to tokens based on how often they appear in a sequence.")
|
463 |
layout["inference_tts"]["inputs"]["repetition-penalty-decay"] = gr.Slider(value=0.0, minimum=-2.0, maximum=2.0, step=0.05, label="Repetition Penalty Length Decay", info="Modifies the reptition penalty based on how far back in time the token appeared in the sequence.")
|
464 |
layout["inference_tts"]["inputs"]["length-penalty"] = gr.Slider(value=0.0, minimum=-2.0, maximum=2.0, step=0.05, label="Length Penalty", info="(AR only) Modifies the probability of a stop token based on the current length of the sequence.")
|
465 |
-
|
466 |
-
layout["inference_tts"]["inputs"]["mirostat-tau"] = gr.Slider(value=0.0, minimum=0.0, maximum=8.0, step=0.05, label="Mirostat τ (Tau)", info="The \"surprise\" value when performing mirostat sampling. 0 to disable.")
|
467 |
-
layout["inference_tts"]["inputs"]["mirostat-eta"] = gr.Slider(value=0.0, minimum=0.0, maximum=2.0, step=0.05, label="Mirostat η (Eta)", info="The \"learning rate\" during mirostat sampling applied to the maximum surprise.")
|
468 |
-
with gr.Row():
|
469 |
-
layout["inference_tts"]["inputs"]["dry-multiplier"] = gr.Slider(value=0.0, minimum=0.0, maximum=8.0, step=0.05, label="DRY Multiplier", info="The multiplying factor for the DRY score penalty (0 to disable DRY sampling).")
|
470 |
-
layout["inference_tts"]["inputs"]["dry-base"] = gr.Slider(value=1.75, minimum=0.0, maximum=8.0, step=0.05, label="DRY Base", info="The base of the exponent in the DRY score penalty")
|
471 |
-
layout["inference_tts"]["inputs"]["dry-allowed-length"] = gr.Slider(value=2, minimum=0, maximum=75, step=1, label="Allowed Length", info="The maximimum length a token can be to perform DRY penalty with.")
|
472 |
with gr.Tab("Experimental Settings", visible=cfg.experimental):
|
473 |
with gr.Row():
|
474 |
layout["inference_tts"]["inputs"]["max-levels"] = gr.Slider(value=7, minimum=0, maximum=7, step=1, label="Max NAR Levels", info="Limits how many steps to perform in the NAR pass.")
|
475 |
layout["inference_tts"]["inputs"]["beam-width"] = gr.Slider(value=0, minimum=0, maximum=32, step=1, label="Beam Width", info="Number of branches to search through for beam search sampling.")
|
476 |
-
layout["inference_tts"]["inputs"]["prefix-silence"] = gr.Slider(value=0.0, minimum=0.0, maximum=1.0, step=0.
|
477 |
with gr.Row():
|
478 |
layout["inference_tts"]["inputs"]["input-prompt-prefix"] = gr.Checkbox(label="Input Prompt as Prefix", info="Treats the input prompt clip as the prefix of the generated sequence.")
|
479 |
layout["inference_tts"]["inputs"]["dynamic-sampling"] = gr.Checkbox(label="Dynamic Temperature", info="Dynamically adjusts the temperature based on the highest confident predicted token per sampling step.")
|
480 |
layout["inference_tts"]["inputs"]["entropix-sampling"] = gr.Checkbox(label="Entropix Sampling", info="Dynamically samples based on entropy/varentropy values from the logits / attention scores.")
|
481 |
layout["inference_tts"]["inputs"]["refine-on-stop"] = gr.Checkbox(label="Refine on <stop>", info="Uses the last step's logits for the AR sequence instead.")
|
482 |
-
with gr.Row(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
483 |
layout["inference_tts"]["inputs"]["layer-skip"] = gr.Checkbox(label="Layer Skip", info="Performs self-speculative early exit 'sampling'")
|
484 |
layout["inference_tts"]["inputs"]["layer-skip-exit-layer"] = gr.Slider(value=11, minimum=0, maximum=11, step=1, label="Layer Skip Exit Layer", info="Maximum model layer to exit early from.")
|
485 |
layout["inference_tts"]["inputs"]["layer-skip-entropy-threshold"] = gr.Slider(value=0.1, minimum=0, maximum=1.0, step=0.01, label="Layer Skip Entropy Threshold", info="Entropy threshold for early-exit")
|
486 |
layout["inference_tts"]["inputs"]["layer-skip-varentropy-threshold"] = gr.Slider(value=0.1, minimum=0, maximum=1.0, step=0.01, label="Layer Skip Varentropy Threshold", info="Varentropy threshold for early-exit")
|
487 |
-
|
488 |
|
489 |
layout["inference_tts"]["buttons"]["inference"].click(
|
490 |
fn=do_inference_tts,
|
@@ -505,10 +509,8 @@ with ui:
|
|
505 |
with gr.Tab("Basic Settings"):
|
506 |
with gr.Row():
|
507 |
layout["inference_stt"]["inputs"]["ar-temperature"] = gr.Slider(value=0.0, minimum=0.0, maximum=1.5, step=0.05, label="Temperature (AR)", info="Modifies the randomness from the samples in the AR. (0 to greedy sample)")
|
508 |
-
|
509 |
-
|
510 |
-
layout["inference_stt"]["inputs"]["language"] = gr.Dropdown(choices=get_languages(), label="Language", value="en")
|
511 |
-
with gr.Tab("Sampler Settings"):
|
512 |
with gr.Row():
|
513 |
layout["inference_stt"]["inputs"]["top-p"] = gr.Slider(value=1.0, minimum=0.0, maximum=1.0, step=0.05, label="Top P", info=r"Limits the samples that are outside the top P% of probabilities.")
|
514 |
layout["inference_stt"]["inputs"]["top-k"] = gr.Slider(value=0, minimum=0, maximum=1024, step=1, label="Top K", info="Limits the samples to the top K of probabilities.")
|
@@ -519,6 +521,7 @@ with ui:
|
|
519 |
layout["inference_stt"]["inputs"]["repetition-penalty-decay"] = gr.Slider(value=0.0, minimum=-2.0, maximum=2.0, step=0.05, label="Repetition Penalty Length Decay", info="Modifies the reptition penalty based on how far back in time the token appeared in the sequence.")
|
520 |
layout["inference_stt"]["inputs"]["length-penalty"] = gr.Slider(value=0.0, minimum=-2.0, maximum=2.0, step=0.05, label="Length Penalty", info="(AR only) Modifies the probability of a stop token based on the current length of the sequence.")
|
521 |
with gr.Row():
|
|
|
522 |
layout["inference_stt"]["inputs"]["mirostat-tau"] = gr.Slider(value=0.0, minimum=0.0, maximum=8.0, step=0.05, label="Mirostat τ (Tau)", info="The \"surprise\" value when performing mirostat sampling. 0 to disable.")
|
523 |
layout["inference_stt"]["inputs"]["mirostat-eta"] = gr.Slider(value=0.0, minimum=0.0, maximum=2.0, step=0.05, label="Mirostat η (Eta)", info="The \"learning rate\" during mirostat sampling applied to the maximum surprise.")
|
524 |
with gr.Row():
|
@@ -567,14 +570,15 @@ with ui:
|
|
567 |
if not USING_SPACES:
|
568 |
with gr.Tab("Settings"):
|
569 |
with gr.Row():
|
570 |
-
with gr.Column(scale=7):
|
571 |
-
with gr.Row():
|
572 |
-
layout["settings"]["inputs"]["models"] = gr.Dropdown(choices=get_model_paths(), value=args.yaml or args.model, label="Model")
|
573 |
-
layout["settings"]["inputs"]["device"] = gr.Dropdown(choices=get_devices(), value="cuda:0", label="Device")
|
574 |
-
layout["settings"]["inputs"]["dtype"] = gr.Dropdown(choices=get_dtypes(), value="auto", label="Precision")
|
575 |
-
layout["settings"]["inputs"]["attentions"] = gr.Dropdown(choices=get_attentions(), value="auto", label="Attentions")
|
576 |
with gr.Column(scale=1):
|
577 |
layout["settings"]["buttons"]["load"] = gr.Button(value="Load Model")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
578 |
|
579 |
layout["settings"]["buttons"]["load"].click(
|
580 |
fn=load_model,
|
|
|
122 |
return cfg.dataset.training
|
123 |
|
124 |
def get_languages():
|
125 |
+
return list(get_lang_symmap().keys()) + ["auto"]
|
126 |
|
127 |
#@gradio_wrapper(inputs=layout["dataset"]["inputs"].keys())
|
128 |
def load_sample( speaker ):
|
|
|
265 |
elif args.split_text_by == "none":
|
266 |
args.split_text_by = None
|
267 |
|
268 |
+
if args.text_language == "auto":
|
269 |
+
args.text_language = None
|
270 |
+
|
271 |
tts = init_tts()
|
272 |
|
273 |
gr.Info(f"Inferencing... (Modality: {tts.modality(args.modality.lower())})")
|
|
|
440 |
with gr.Column(scale=7):
|
441 |
with gr.Tab("Basic Settings"):
|
442 |
with gr.Row():
|
443 |
+
layout["inference_tts"]["inputs"]["max-steps"] = gr.Slider(value=50, minimum=1, maximum=200, step=1, label="Max Steps", info="Limits how many steps to perform in the NAR-len (demask) pass.")
|
444 |
+
layout["inference_tts"]["inputs"]["max-duration"] = gr.Slider(value=12, minimum=1, maximum=32, step=0.1, label="Maximum Duration", info="Limits how long an utterance can be.")
|
445 |
+
layout["inference_tts"]["inputs"]["input-prompt-length"] = gr.Slider(value=0.0, minimum=0.0, maximum=12.0, step=0.5, label="Input Prompt Repeat/Trim Length", info="Repeats/trims the input prompt down to X seconds (0 to disable).")
|
446 |
with gr.Row():
|
447 |
+
layout["inference_tts"]["inputs"]["text-language"] = gr.Dropdown(choices=get_languages(), label="Language (Text)", value="auto", info="Language the input text is in.")
|
448 |
+
layout["inference_tts"]["inputs"]["language"] = gr.Dropdown(choices=get_languages(), label="Language (Output)", value="auto", info="Target language/accent to output.")
|
|
|
449 |
with gr.Row():
|
450 |
+
layout["inference_tts"]["inputs"]["split-text-by"] = gr.Dropdown(choices=["sentences", "lines"], label="Text Delimiter", info="How to split the text into utterances.", value="sentences")
|
|
|
|
|
|
|
|
|
|
|
451 |
layout["inference_tts"]["inputs"]["context-history"] = gr.Slider(value=0, minimum=0, maximum=4, step=1, label="(Rolling) Context History", info="How many prior lines to serve as the context/prefix (0 to disable).")
|
452 |
with gr.Tab("Sampler Settings"):
|
453 |
with gr.Row():
|
454 |
+
layout["inference_tts"]["inputs"]["ar-temperature"] = gr.Slider(value=1.0, minimum=0.0, maximum=1.5, step=0.05, label="Temperature (AR/NAR-len)", info="Adjusts the probabilities in the AR/NAR-len. (0 to greedy* sample)")
|
455 |
+
layout["inference_tts"]["inputs"]["nar-temperature"] = gr.Slider(value=0.0, minimum=0.0, maximum=1.5, step=0.05, label="Temperature (NAR)", info="Adjusts the probabilities in the NAR. (0 to greedy sample)")
|
456 |
+
layout["inference_tts"]["inputs"]["modality"] = gr.Dropdown(value="Auto", choices=["Auto", "AR+NAR", "NAR-len"], label="Modality", info="Whether to inference with the AR+NAR or through the NAR-len.")
|
457 |
+
with gr.Row():
|
458 |
+
layout["inference_tts"]["inputs"]["cfg-strength"] = gr.Slider(value=1.0, minimum=0.0, maximum=14.0, step=0.5, label="CFG Strength", info="Classifier Free Guidance scale (AR needs 1, NAR-len needs 3).")
|
459 |
+
layout["inference_tts"]["inputs"]["cfg-rescale"] = gr.Slider(value=0.75, minimum=0.0, maximum=1.0, step=0.05, label="CFG Rescale (Phi)", info="Factor when rescaling for Classifier Free Guidance (0 to disable).")
|
460 |
+
with gr.Row():
|
461 |
+
layout["inference_tts"]["inputs"]["min-p"] = gr.Slider(value=0.0, minimum=0.0, maximum=1.0, step=0.05, label="Min P", info="Filter out logits lower than this value.")
|
462 |
layout["inference_tts"]["inputs"]["top-p"] = gr.Slider(value=1.0, minimum=0.0, maximum=1.0, step=0.05, label="Top P", info=r"Limits the samples that are outside the top P% of probabilities.")
|
463 |
layout["inference_tts"]["inputs"]["top-k"] = gr.Slider(value=0, minimum=0, maximum=1024, step=1, label="Top K", info="Limits the samples to the top K of probabilities.")
|
464 |
+
layout["inference_tts"]["inputs"]["top-no"] = gr.Slider(value=0, minimum=0, maximum=2, step=0.5, label="Top-nσ", info="Performs top-nσ logits processing.")
|
|
|
465 |
with gr.Row():
|
466 |
layout["inference_tts"]["inputs"]["repetition-penalty"] = gr.Slider(value=1.0, minimum=0.0, maximum=5.0, step=0.05, label="Repetition Penalty", info="Incurs a penalty to tokens based on how often they appear in a sequence.")
|
467 |
layout["inference_tts"]["inputs"]["repetition-penalty-decay"] = gr.Slider(value=0.0, minimum=-2.0, maximum=2.0, step=0.05, label="Repetition Penalty Length Decay", info="Modifies the reptition penalty based on how far back in time the token appeared in the sequence.")
|
468 |
layout["inference_tts"]["inputs"]["length-penalty"] = gr.Slider(value=0.0, minimum=-2.0, maximum=2.0, step=0.05, label="Length Penalty", info="(AR only) Modifies the probability of a stop token based on the current length of the sequence.")
|
469 |
+
# These settings are pretty much not supported anyways
|
|
|
|
|
|
|
|
|
|
|
|
|
470 |
with gr.Tab("Experimental Settings", visible=cfg.experimental):
|
471 |
with gr.Row():
|
472 |
layout["inference_tts"]["inputs"]["max-levels"] = gr.Slider(value=7, minimum=0, maximum=7, step=1, label="Max NAR Levels", info="Limits how many steps to perform in the NAR pass.")
|
473 |
layout["inference_tts"]["inputs"]["beam-width"] = gr.Slider(value=0, minimum=0, maximum=32, step=1, label="Beam Width", info="Number of branches to search through for beam search sampling.")
|
474 |
+
layout["inference_tts"]["inputs"]["prefix-silence"] = gr.Slider(value=0.0, minimum=0.0, maximum=1.0, step=0.5, label="Silence Prefix Duration", info="Amount of silence to prefix to the output response before beginning inference.")
|
475 |
with gr.Row():
|
476 |
layout["inference_tts"]["inputs"]["input-prompt-prefix"] = gr.Checkbox(label="Input Prompt as Prefix", info="Treats the input prompt clip as the prefix of the generated sequence.")
|
477 |
layout["inference_tts"]["inputs"]["dynamic-sampling"] = gr.Checkbox(label="Dynamic Temperature", info="Dynamically adjusts the temperature based on the highest confident predicted token per sampling step.")
|
478 |
layout["inference_tts"]["inputs"]["entropix-sampling"] = gr.Checkbox(label="Entropix Sampling", info="Dynamically samples based on entropy/varentropy values from the logits / attention scores.")
|
479 |
layout["inference_tts"]["inputs"]["refine-on-stop"] = gr.Checkbox(label="Refine on <stop>", info="Uses the last step's logits for the AR sequence instead.")
|
480 |
+
with gr.Row():
|
481 |
+
layout["inference_tts"]["inputs"]["mirostat-tau"] = gr.Slider(value=0.0, minimum=0.0, maximum=8.0, step=0.05, label="Mirostat τ (Tau)", info="The \"surprise\" value when performing mirostat sampling. 0 to disable.")
|
482 |
+
layout["inference_tts"]["inputs"]["mirostat-eta"] = gr.Slider(value=0.0, minimum=0.0, maximum=2.0, step=0.05, label="Mirostat η (Eta)", info="The \"learning rate\" during mirostat sampling applied to the maximum surprise.")
|
483 |
+
with gr.Row():
|
484 |
+
layout["inference_tts"]["inputs"]["dry-multiplier"] = gr.Slider(value=0.0, minimum=0.0, maximum=8.0, step=0.05, label="DRY Multiplier", info="The multiplying factor for the DRY score penalty (0 to disable DRY sampling).")
|
485 |
+
layout["inference_tts"]["inputs"]["dry-base"] = gr.Slider(value=1.75, minimum=0.0, maximum=8.0, step=0.05, label="DRY Base", info="The base of the exponent in the DRY score penalty")
|
486 |
+
layout["inference_tts"]["inputs"]["dry-allowed-length"] = gr.Slider(value=2, minimum=0, maximum=75, step=1, label="Allowed Length", info="The maximimum length a token can be to perform DRY penalty with.")
|
487 |
+
with gr.Row():
|
488 |
layout["inference_tts"]["inputs"]["layer-skip"] = gr.Checkbox(label="Layer Skip", info="Performs self-speculative early exit 'sampling'")
|
489 |
layout["inference_tts"]["inputs"]["layer-skip-exit-layer"] = gr.Slider(value=11, minimum=0, maximum=11, step=1, label="Layer Skip Exit Layer", info="Maximum model layer to exit early from.")
|
490 |
layout["inference_tts"]["inputs"]["layer-skip-entropy-threshold"] = gr.Slider(value=0.1, minimum=0, maximum=1.0, step=0.01, label="Layer Skip Entropy Threshold", info="Entropy threshold for early-exit")
|
491 |
layout["inference_tts"]["inputs"]["layer-skip-varentropy-threshold"] = gr.Slider(value=0.1, minimum=0, maximum=1.0, step=0.01, label="Layer Skip Varentropy Threshold", info="Varentropy threshold for early-exit")
|
|
|
492 |
|
493 |
layout["inference_tts"]["buttons"]["inference"].click(
|
494 |
fn=do_inference_tts,
|
|
|
509 |
with gr.Tab("Basic Settings"):
|
510 |
with gr.Row():
|
511 |
layout["inference_stt"]["inputs"]["ar-temperature"] = gr.Slider(value=0.0, minimum=0.0, maximum=1.5, step=0.05, label="Temperature (AR)", info="Modifies the randomness from the samples in the AR. (0 to greedy sample)")
|
512 |
+
layout["inference_stt"]["inputs"]["language"] = gr.Dropdown(choices=get_languages(), label="Language", value="en", info="Language of the input audio being transcribed.")
|
513 |
+
with gr.Tab("Sampler Settings", visible=False):
|
|
|
|
|
514 |
with gr.Row():
|
515 |
layout["inference_stt"]["inputs"]["top-p"] = gr.Slider(value=1.0, minimum=0.0, maximum=1.0, step=0.05, label="Top P", info=r"Limits the samples that are outside the top P% of probabilities.")
|
516 |
layout["inference_stt"]["inputs"]["top-k"] = gr.Slider(value=0, minimum=0, maximum=1024, step=1, label="Top K", info="Limits the samples to the top K of probabilities.")
|
|
|
521 |
layout["inference_stt"]["inputs"]["repetition-penalty-decay"] = gr.Slider(value=0.0, minimum=-2.0, maximum=2.0, step=0.05, label="Repetition Penalty Length Decay", info="Modifies the reptition penalty based on how far back in time the token appeared in the sequence.")
|
522 |
layout["inference_stt"]["inputs"]["length-penalty"] = gr.Slider(value=0.0, minimum=-2.0, maximum=2.0, step=0.05, label="Length Penalty", info="(AR only) Modifies the probability of a stop token based on the current length of the sequence.")
|
523 |
with gr.Row():
|
524 |
+
layout["inference_stt"]["inputs"]["dynamic-sampling"] = gr.Checkbox(label="Dynamic Temperature", info="Dynamically adjusts the temperature based on the highest confident predicted token per sampling step.")
|
525 |
layout["inference_stt"]["inputs"]["mirostat-tau"] = gr.Slider(value=0.0, minimum=0.0, maximum=8.0, step=0.05, label="Mirostat τ (Tau)", info="The \"surprise\" value when performing mirostat sampling. 0 to disable.")
|
526 |
layout["inference_stt"]["inputs"]["mirostat-eta"] = gr.Slider(value=0.0, minimum=0.0, maximum=2.0, step=0.05, label="Mirostat η (Eta)", info="The \"learning rate\" during mirostat sampling applied to the maximum surprise.")
|
527 |
with gr.Row():
|
|
|
570 |
if not USING_SPACES:
|
571 |
with gr.Tab("Settings"):
|
572 |
with gr.Row():
|
|
|
|
|
|
|
|
|
|
|
|
|
573 |
with gr.Column(scale=1):
|
574 |
layout["settings"]["buttons"]["load"] = gr.Button(value="Load Model")
|
575 |
+
with gr.Column(scale=7):
|
576 |
+
with gr.Row():
|
577 |
+
layout["settings"]["inputs"]["models"] = gr.Dropdown(choices=get_model_paths(), value=args.yaml or args.model, label="Model", info="Model to load. Can load from a config YAML or the weights itself.")
|
578 |
+
layout["settings"]["inputs"]["device"] = gr.Dropdown(choices=get_devices(), value="cuda:0", label="Device", info="Device to load the weights onto.")
|
579 |
+
with gr.Row():
|
580 |
+
layout["settings"]["inputs"]["dtype"] = gr.Dropdown(choices=get_dtypes(), value="auto", label="Precision", info="Tensor type to load the model under.")
|
581 |
+
layout["settings"]["inputs"]["attentions"] = gr.Dropdown(choices=get_attentions(), value="auto", label="Attentions", info="Attention mechanism to utilize.")
|
582 |
|
583 |
layout["settings"]["buttons"]["load"].click(
|
584 |
fn=load_model,
|
requirements.txt
CHANGED
@@ -4,4 +4,4 @@ torchaudio
|
|
4 |
sageattention==1.0.6
|
5 |
pykakasi
|
6 |
|
7 |
-
vall_e @ git+https://github.com/e-c-k-e-r/vall-e.git@
|
|
|
4 |
sageattention==1.0.6
|
5 |
pykakasi
|
6 |
|
7 |
+
vall_e @ git+https://github.com/e-c-k-e-r/vall-e.git@0c5a458b005d155618dcc83082389baaf8f951bb
|