Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
from huggingface_hub import ModelFilter, snapshot_download | |
from huggingface_hub import ModelCard | |
import os | |
import json | |
import time | |
from collections import defaultdict | |
from src.submission.check_validity import is_model_on_hub, check_model_card, get_model_tags | |
from src.leaderboard.read_evals import EvalResult | |
from src.envs import ( | |
DYNAMIC_INFO_REPO, | |
DYNAMIC_INFO_PATH, | |
DYNAMIC_INFO_FILE_PATH, | |
API, | |
H4_TOKEN, | |
ORIGINAL_HF_LEADERBOARD_RESULTS_REPO, | |
ORIGINAL_HF_LEADERBOARD_EVAL_RESULTS_PATH, | |
GET_ORIGINAL_HF_LEADERBOARD_EVAL_RESULTS | |
) | |
from src.display.utils import ORIGINAL_TASKS | |
def update_models(file_path, models, original_leaderboard_files=None): | |
""" | |
Search through all JSON files in the specified root folder and its subfolders, | |
and update the likes key in JSON dict from value of input dict | |
""" | |
with open(file_path, "r") as f: | |
model_infos = json.load(f) | |
for model_id, data in model_infos.items(): | |
if model_id not in models: | |
data['still_on_hub'] = False | |
data['likes'] = 0 | |
data['downloads'] = 0 | |
data['created_at'] = "" | |
data['original_llm_scores'] = {} | |
continue | |
model_cfg = models[model_id] | |
data['likes'] = model_cfg.likes | |
data['downloads'] = model_cfg.downloads | |
data['created_at'] = str(model_cfg.created_at) | |
#data['params'] = get_model_size(model_cfg, data['precision']) | |
data['license'] = model_cfg.card_data.license if model_cfg.card_data is not None else "" | |
data['original_llm_scores'] = {} | |
# Is the model still on the hub? | |
model_name = model_id | |
if model_cfg.card_data is not None and hasattr(model_cfg.card_data, "base_model") and model_cfg.card_data.base_model is not None: | |
if isinstance(model_cfg.card_data.base_model, str): | |
model_name = model_cfg.card_data.base_model # for adapters, we look at the parent model | |
still_on_hub, _, _ = is_model_on_hub( | |
model_name=model_name, revision=data.get("revision"), trust_remote_code=True, test_tokenizer=False, token=H4_TOKEN | |
) | |
data['still_on_hub'] = still_on_hub | |
tags = [] | |
if still_on_hub: | |
status, _, _, model_card = check_model_card(model_id) | |
tags = get_model_tags(model_card, model_id) | |
if original_leaderboard_files is not None and model_id in original_leaderboard_files: | |
eval_results = {} | |
for filepath in original_leaderboard_files[model_id]: | |
eval_result = EvalResult.init_from_json_file(filepath, is_original=True) | |
# Store results of same eval together | |
eval_name = eval_result.eval_name | |
if eval_name in eval_results.keys(): | |
eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None}) | |
else: | |
eval_results[eval_name] = eval_result | |
for eval_result in eval_results.values(): | |
precision = eval_result.precision.value.name | |
if len(eval_result.results) < len(ORIGINAL_TASKS): | |
continue | |
data['original_llm_scores'][precision] = sum([v for v in eval_result.results.values() if v is not None]) / len(ORIGINAL_TASKS) | |
data["tags"] = tags | |
with open(file_path, 'w') as f: | |
json.dump(model_infos, f, indent=2) | |
def update_dynamic_files(): | |
""" This will only update metadata for models already linked in the repo, not add missing ones. | |
""" | |
snapshot_download( | |
repo_id=DYNAMIC_INFO_REPO, local_dir=DYNAMIC_INFO_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30 | |
) | |
print("UPDATE_DYNAMIC: Loaded snapshot") | |
# Get models | |
start = time.time() | |
models = list(API.list_models( | |
# filter=ModelFilter(task="text-generation"), | |
full=False, | |
cardData=True, | |
fetch_config=True, | |
)) | |
id_to_model = {model.id : model for model in models} | |
id_to_leaderboard_files = defaultdict(list) | |
if GET_ORIGINAL_HF_LEADERBOARD_EVAL_RESULTS: | |
try: | |
print("UPDATE_DYNAMIC: Downloading Original HF Leaderboard results snapshot") | |
snapshot_download( | |
repo_id=ORIGINAL_HF_LEADERBOARD_RESULTS_REPO, local_dir=ORIGINAL_HF_LEADERBOARD_EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30 | |
) | |
#original_leaderboard_files = [] #API.list_repo_files(ORIGINAL_HF_LEADERBOARD_RESULTS_REPO, repo_type='dataset') | |
for dirpath,_,filenames in os.walk(ORIGINAL_HF_LEADERBOARD_EVAL_RESULTS_PATH): | |
for f in filenames: | |
if not (f.startswith('results_') and f.endswith('.json')): | |
continue | |
filepath = os.path.join(dirpath[len(ORIGINAL_HF_LEADERBOARD_EVAL_RESULTS_PATH)+1:], f) | |
model_id = filepath[:filepath.find('/results_')] | |
id_to_leaderboard_files[model_id].append(os.path.join(dirpath, f)) | |
for model_id in id_to_leaderboard_files: | |
id_to_leaderboard_files[model_id].sort() | |
except Exception as e: | |
print(f"UPDATE_DYNAMIC: Could not download original results from : {e}") | |
id_to_leaderboard_files = None | |
print(f"UPDATE_DYNAMIC: Downloaded list of models in {time.time() - start:.2f} seconds") | |
start = time.time() | |
update_models(DYNAMIC_INFO_FILE_PATH, id_to_model, id_to_leaderboard_files) | |
print(f"UPDATE_DYNAMIC: updated in {time.time() - start:.2f} seconds") | |
API.upload_file( | |
path_or_fileobj=DYNAMIC_INFO_FILE_PATH, | |
path_in_repo=DYNAMIC_INFO_FILE_PATH.split("/")[-1], | |
repo_id=DYNAMIC_INFO_REPO, | |
repo_type="dataset", | |
commit_message=f"Daily request file update.", | |
) | |
print(f"UPDATE_DYNAMIC: pushed to hub") | |