edugp's picture
Sync with data tooling repo, using edugp/kenlm models, updating viz to use quantiles for coloring and ad-hoc viz for the registry dataset
3c30fa3
import logging
from functools import partial
from typing import Optional
import pandas as pd
import typer
from bokeh.plotting import output_file as bokeh_output_file
from bokeh.plotting import save
from embedding_lenses.dimensionality_reduction import (
get_tsne_embeddings,
get_umap_embeddings,
)
from embedding_lenses.embedding import load_model
from perplexity_lenses import REGISTRY_DATASET
from perplexity_lenses.data import (
documents_df_to_sentences_df,
hub_dataset_to_dataframe,
)
from perplexity_lenses.engine import (
DIMENSIONALITY_REDUCTION_ALGORITHMS,
DOCUMENT_TYPES,
EMBEDDING_MODELS,
LANGUAGES,
PERPLEXITY_MODELS,
SEED,
generate_plot,
)
from perplexity_lenses.perplexity import KenlmModel
from perplexity_lenses.visualization import draw_histogram
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
app = typer.Typer()
@app.command()
def main(
dataset: str = typer.Option(
"mc4", help="The name of the hub dataset or local csv/tsv file."
),
dataset_config: Optional[str] = typer.Option(
"es",
help="The configuration of the hub dataset, if any. Does not apply to local csv/tsv files.",
),
dataset_split: Optional[str] = typer.Option(
"train", help="The dataset split. Does not apply to local csv/tsv files."
),
text_column: str = typer.Option("text", help="The text field name."),
language: str = typer.Option(
"es", help=f"The language of the text. Options: {LANGUAGES}"
),
doc_type: str = typer.Option(
"sentence",
help=f"Whether to embed at the sentence or document level. Options: {DOCUMENT_TYPES}.",
),
sample: int = typer.Option(1000, help="Maximum number of examples to use."),
perplexity_model: str = typer.Option(
"wikipedia",
help=f"Dataset on which the perplexity model was trained on. Options: {PERPLEXITY_MODELS}",
),
dimensionality_reduction: str = typer.Option(
DIMENSIONALITY_REDUCTION_ALGORITHMS[0],
help=f"Whether to use UMAP or t-SNE for dimensionality reduction. Options: {DIMENSIONALITY_REDUCTION_ALGORITHMS}.",
),
model_name: str = typer.Option(
EMBEDDING_MODELS[0],
help=f"The sentence embedding model to use. Options: {EMBEDDING_MODELS}",
),
output_file: str = typer.Option(
"perplexity", help="The name of the output visualization files."
),
):
"""
Perplexity Lenses: Visualize text embeddings in 2D using colors to represent perplexity values.
"""
logger.info("Loading embedding model...")
model = load_model(model_name)
dimensionality_reduction_function = (
partial(get_umap_embeddings, random_state=SEED)
if dimensionality_reduction.lower() == "umap"
else partial(get_tsne_embeddings, random_state=SEED)
)
logger.info("Loading KenLM model...")
kenlm_model = KenlmModel.from_pretrained(
perplexity_model.lower(),
language,
lower_case=True,
remove_accents=True,
normalize_numbers=True,
punctuation=1,
)
logger.info("Loading dataset...")
if dataset.endswith(".csv") or dataset.endswith(".tsv"):
df = pd.read_csv(dataset, sep="\t" if dataset.endswith(".tsv") else ",")
if doc_type.lower() == "sentence":
df = documents_df_to_sentences_df(df, text_column, sample, seed=SEED)
df["perplexity"] = df[text_column].map(kenlm_model.get_perplexity)
else:
df = hub_dataset_to_dataframe(
dataset,
dataset_config,
dataset_split,
sample,
text_column,
kenlm_model,
seed=SEED,
doc_type=doc_type,
)
# Round perplexity
df["perplexity"] = df["perplexity"].round().astype(int)
logger.info(
f"Perplexity range: {df['perplexity'].min()} - {df['perplexity'].max()}"
)
plot, plot_registry = generate_plot(
df,
text_column,
"perplexity",
None,
dimensionality_reduction_function,
model,
seed=SEED,
hub_dataset=dataset,
)
logger.info("Saving plots")
bokeh_output_file(f"{output_file}.html")
save(plot)
if dataset == REGISTRY_DATASET:
bokeh_output_file(f"{output_file}_registry.html")
save(plot_registry)
fig = draw_histogram(df["perplexity"].values)
fig.savefig(f"{output_file}_histogram.png")
logger.info("Done")
if __name__ == "__main__":
app()