ehengao commited on
Commit
4a27dd7
1 Parent(s): 0dfd943

add initial version for the kmeans assumption dashboard

Browse files
Files changed (4) hide show
  1. .gitignore +160 -0
  2. README.md +1 -0
  3. app.py +161 -0
  4. requirements.txt +2 -0
.gitignore ADDED
@@ -0,0 +1,160 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Byte-compiled / optimized / DLL files
2
+ __pycache__/
3
+ *.py[cod]
4
+ *$py.class
5
+
6
+ # C extensions
7
+ *.so
8
+
9
+ # Distribution / packaging
10
+ .Python
11
+ build/
12
+ develop-eggs/
13
+ dist/
14
+ downloads/
15
+ eggs/
16
+ .eggs/
17
+ lib/
18
+ lib64/
19
+ parts/
20
+ sdist/
21
+ var/
22
+ wheels/
23
+ share/python-wheels/
24
+ *.egg-info/
25
+ .installed.cfg
26
+ *.egg
27
+ MANIFEST
28
+
29
+ # PyInstaller
30
+ # Usually these files are written by a python script from a template
31
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
32
+ *.manifest
33
+ *.spec
34
+
35
+ # Installer logs
36
+ pip-log.txt
37
+ pip-delete-this-directory.txt
38
+
39
+ # Unit test / coverage reports
40
+ htmlcov/
41
+ .tox/
42
+ .nox/
43
+ .coverage
44
+ .coverage.*
45
+ .cache
46
+ nosetests.xml
47
+ coverage.xml
48
+ *.cover
49
+ *.py,cover
50
+ .hypothesis/
51
+ .pytest_cache/
52
+ cover/
53
+
54
+ # Translations
55
+ *.mo
56
+ *.pot
57
+
58
+ # Django stuff:
59
+ *.log
60
+ local_settings.py
61
+ db.sqlite3
62
+ db.sqlite3-journal
63
+
64
+ # Flask stuff:
65
+ instance/
66
+ .webassets-cache
67
+
68
+ # Scrapy stuff:
69
+ .scrapy
70
+
71
+ # Sphinx documentation
72
+ docs/_build/
73
+
74
+ # PyBuilder
75
+ .pybuilder/
76
+ target/
77
+
78
+ # Jupyter Notebook
79
+ .ipynb_checkpoints
80
+
81
+ # IPython
82
+ profile_default/
83
+ ipython_config.py
84
+
85
+ # pyenv
86
+ # For a library or package, you might want to ignore these files since the code is
87
+ # intended to run in multiple environments; otherwise, check them in:
88
+ # .python-version
89
+
90
+ # pipenv
91
+ # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
92
+ # However, in case of collaboration, if having platform-specific dependencies or dependencies
93
+ # having no cross-platform support, pipenv may install dependencies that don't work, or not
94
+ # install all needed dependencies.
95
+ #Pipfile.lock
96
+
97
+ # poetry
98
+ # Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
99
+ # This is especially recommended for binary packages to ensure reproducibility, and is more
100
+ # commonly ignored for libraries.
101
+ # https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
102
+ #poetry.lock
103
+
104
+ # pdm
105
+ # Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
106
+ #pdm.lock
107
+ # pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
108
+ # in version control.
109
+ # https://pdm.fming.dev/#use-with-ide
110
+ .pdm.toml
111
+
112
+ # PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
113
+ __pypackages__/
114
+
115
+ # Celery stuff
116
+ celerybeat-schedule
117
+ celerybeat.pid
118
+
119
+ # SageMath parsed files
120
+ *.sage.py
121
+
122
+ # Environments
123
+ .env
124
+ .venv
125
+ env/
126
+ venv/
127
+ ENV/
128
+ env.bak/
129
+ venv.bak/
130
+
131
+ # Spyder project settings
132
+ .spyderproject
133
+ .spyproject
134
+
135
+ # Rope project settings
136
+ .ropeproject
137
+
138
+ # mkdocs documentation
139
+ /site
140
+
141
+ # mypy
142
+ .mypy_cache/
143
+ .dmypy.json
144
+ dmypy.json
145
+
146
+ # Pyre type checker
147
+ .pyre/
148
+
149
+ # pytype static type analyzer
150
+ .pytype/
151
+
152
+ # Cython debug symbols
153
+ cython_debug/
154
+
155
+ # PyCharm
156
+ # JetBrains specific template is maintained in a separate JetBrains.gitignore that can
157
+ # be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
158
+ # and can be added to the global gitignore or merged into this file. For a more nuclear
159
+ # option (not recommended) you can uncomment the following to ignore the entire idea folder.
160
+ #.idea/
README.md CHANGED
@@ -9,5 +9,6 @@ app_file: app.py
9
  pinned: false
10
  license: apache-2.0
11
  ---
 
12
 
13
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
9
  pinned: false
10
  license: apache-2.0
11
  ---
12
+ This dashboard is a live demonstration of the sklearn document at https://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_assumptions.html#sphx-glr-auto-examples-cluster-plot-kmeans-assumptions-py
13
 
14
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
app.py ADDED
@@ -0,0 +1,161 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """This dashboard is a live demonstration of the sklearn document at
2
+ https://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_assumptions.html#sphx-glr-auto-examples-cluster-plot-kmeans-assumptions-py
3
+ """
4
+ import numpy as np
5
+ import typing as tp
6
+ import pandas as pd
7
+ import gradio as gr
8
+ from sklearn.datasets import make_blobs
9
+ from sklearn.cluster import KMeans
10
+ import matplotlib.pyplot as plt
11
+
12
+ title = "Demonstration of k-means assumptions"
13
+ random_state = 170
14
+ transformation = [[0.60834549, -0.63667341], [-0.40887718, 0.85253229]]
15
+
16
+ # Defines 4 Apps for each demo senario
17
+ class App:
18
+ name: tp.ClassVar[str]
19
+ description: tp.ClassVar[str]
20
+
21
+ def make_data(self, n_samples: int) -> tp.Tuple[np.ndarray, np.ndarray]:
22
+ raise NotImplementedError()
23
+
24
+ def kmeans_predict(self, n_cluster: int, X: np.ndarray) -> np.ndarray:
25
+ raise NotImplementedError()
26
+
27
+ class MixGaussianBlobs(App):
28
+ name = "Mixture of Gaussian Blobs"
29
+ description = (
30
+ "In a real setting there is no uniquely defined true number of clusters. "
31
+ "An appropriate number of clusters has to be decided from data-based criteria"
32
+ " and knowledge of the intended goal."
33
+ )
34
+
35
+ def make_data(self, n_samples):
36
+ return make_blobs(n_samples=n_samples, random_state=random_state)
37
+
38
+ def kmeans_predict(self, n_clusters, X):
39
+ return KMeans(
40
+ n_clusters=n_clusters, n_init="auto", random_state=random_state
41
+ ).fit_predict(X)
42
+
43
+
44
+ class AnisoDistBlobs(MixGaussianBlobs):
45
+ name = "Anisotropically Distributed Blobs"
46
+ description = (
47
+ "k-means consists of minimizing sample’s euclidean distances to the centroid of the"
48
+ " cluster they are assigned to. As a consequence, k-means is more appropriate for "
49
+ "clusters that are isotropic and normally distributed (i.e. spherical gaussians)"
50
+ )
51
+
52
+ def make_data(self, n_samples):
53
+ X, y = super().make_data(n_samples=n_samples)
54
+ X = np.dot(X, transformation)
55
+ return X, y
56
+
57
+
58
+ class UnequalVariance(MixGaussianBlobs):
59
+ name = "Unequal Variance"
60
+ description = (
61
+ "k-means is equivalent to taking the maximum likelihood estimator for a 'mixture' "
62
+ "of k gaussian distributions with the same variances but with possibly different "
63
+ " means."
64
+ )
65
+
66
+ def make_data(self, n_samples):
67
+ return make_blobs(
68
+ n_samples=n_samples, cluster_std=[1.0, 2.5, 0.5], random_state=random_state
69
+ )
70
+
71
+
72
+ class UnevenlySizedBlobs(MixGaussianBlobs):
73
+ name = "Unevenly Sized Blobs"
74
+ description = (
75
+ "There is no theoretical result about k-means that states that it requires similar"
76
+ " cluster sizes to perform well, yet minimizing euclidean distances does mean that"
77
+ " the more sparse and high-dimensional the problem is, the higher is the need to run "
78
+ "the algorithm with different centroid seeds to ensure a global minimal inertia."
79
+ )
80
+
81
+ def make_data(self, n_samples):
82
+ X, y = super().make_data(n_samples=n_samples)
83
+ X_filter = np.vstack(
84
+ (
85
+ X[y == 0][:500],
86
+ X[y == 1][:100],
87
+ X[y == 2][:10],
88
+ )
89
+ )
90
+ # print(len(X_filter[:, 0]))
91
+ # print(len(X_filter[:, 1]))
92
+ y_filter = [0] * 500 + [1] * 100 + [2] * 10
93
+ return X_filter, y_filter
94
+
95
+
96
+ # Define instances of the apps
97
+ _apps = [
98
+ MixGaussianBlobs(),
99
+ AnisoDistBlobs(),
100
+ UnequalVariance(),
101
+ UnevenlySizedBlobs(),
102
+ ]
103
+ apps = {k.name: k for k in _apps}
104
+ data_choices = [k.name for k in _apps]
105
+
106
+
107
+ # Define the callback to the triggered when a button or a slider used by the user.
108
+ def fn(data_choice, n_samples, n_clusters):
109
+ # Find the app and create sample data based on the user choice.
110
+ app = apps[data_choice]
111
+ X, y = app.make_data(n_samples)
112
+ fig_sample, ax_sample = plt.subplots()
113
+ ax_sample.set_title(app.name)
114
+
115
+ # Execute the KMeans clustering.
116
+ y_pred = app.kmeans_predict(n_clusters, X)
117
+ ax_sample.scatter(X[:, 0], X[:, 1], c=y)
118
+ fig_pred, ax_pred = plt.subplots()
119
+ ax_pred.scatter(X[:, 0], X[:, 1], c=y_pred)
120
+ ax_pred.set_title(f"Unexpected KMeans Clusters (n_cluster={n_clusters})")
121
+
122
+ return f"## {app.description}", fig_sample, fig_pred
123
+
124
+
125
+ # Define the dashboard layout and buttons
126
+ with gr.Blocks(title=title) as demo:
127
+ gr.Markdown(f"# {title}")
128
+ with gr.Row():
129
+ data_choice = gr.Radio(
130
+ choices=data_choices,
131
+ value=data_choices[0],
132
+ )
133
+ with gr.Row():
134
+ n_samples = gr.Slider(
135
+ minimum=1500, maximum=3000, step=50, label="Number of Samples"
136
+ )
137
+ n_clusters = gr.Slider(minimum=2, maximum=8, step=1, label="Number of Clusters")
138
+ with gr.Accordion("Description"):
139
+ description = gr.Markdown(label="Description")
140
+ with gr.Row():
141
+ plot_sample = gr.Plot(label="Ground Truth Cluster")
142
+ plot_kmeans = gr.Plot(label="Unexpected KMeans Cluster")
143
+
144
+ data_choice.change(
145
+ fn=fn,
146
+ inputs=[data_choice, n_samples, n_clusters],
147
+ outputs=[description, plot_sample, plot_kmeans],
148
+ )
149
+ n_samples.change(
150
+ fn=fn,
151
+ inputs=[data_choice, n_samples, n_clusters],
152
+ outputs=[description, plot_sample, plot_kmeans],
153
+ )
154
+ n_clusters.change(
155
+ fn=fn,
156
+ inputs=[data_choice, n_samples, n_clusters],
157
+ outputs=[description, plot_sample, plot_kmeans],
158
+ )
159
+
160
+
161
+ demo.launch()
requirements.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ scikit-learn==1.2.2
2
+ matplotlib==3.7.1