Emily McMilin commited on
Commit
67c9f99
1 Parent(s): c4df96b

striping spaces from pipeline pred, to unable scoring roberta preds

Browse files
Files changed (1) hide show
  1. app.py +3 -4
app.py CHANGED
@@ -8,7 +8,7 @@ from matplotlib.ticker import MaxNLocator
8
  from transformers import pipeline
9
 
10
  MODEL_NAMES = ["bert-base-uncased",
11
- "distilbert-base-uncased", "xlm-roberta-base"]
12
  OWN_MODEL_NAME = 'add-your-own'
13
 
14
  DECIMAL_PLACES = 1
@@ -162,8 +162,7 @@ def prepare_text_for_masking(input_text, mask_token, gendered_tokens, split_key)
162
 
163
  def get_avg_prob_from_pipeline_outputs(mask_filled_text, gendered_token, num_preds):
164
  pronoun_preds = [sum([
165
- pronoun["score"] if pronoun["token_str"].lower(
166
- ) in gendered_token else 0.0
167
  for pronoun in top_preds])
168
  for top_preds in mask_filled_text
169
  ]
@@ -352,7 +351,7 @@ def your_fn():
352
  # %%
353
  demo = gr.Blocks()
354
  with demo:
355
- gr.Markdown("## Spurious Correlation Evaluation for our LLMs")
356
  gr.Markdown("Although genders are relatively evenly distributed across time, place and interests, there are also known gender disparities in terms of access to resources. Here we demonstrate that this access disparity can result in dataset selection bias, causing models to learn a surprising range of spurious associations.")
357
 
358
  gr.Markdown("### Dose-response Relationship")
 
8
  from transformers import pipeline
9
 
10
  MODEL_NAMES = ["bert-base-uncased",
11
+ "distilbert-base-uncased", "xlm-roberta-base", "roberta-base"]
12
  OWN_MODEL_NAME = 'add-your-own'
13
 
14
  DECIMAL_PLACES = 1
 
162
 
163
  def get_avg_prob_from_pipeline_outputs(mask_filled_text, gendered_token, num_preds):
164
  pronoun_preds = [sum([
165
+ pronoun["score"] if pronoun["token_str"].strip().lower() in gendered_token else 0.0
 
166
  for pronoun in top_preds])
167
  for top_preds in mask_filled_text
168
  ]
 
351
  # %%
352
  demo = gr.Blocks()
353
  with demo:
354
+ gr.Markdown("## Spurious Correlation Evaluation for Pre-trained and Fine-tuned LLMs")
355
  gr.Markdown("Although genders are relatively evenly distributed across time, place and interests, there are also known gender disparities in terms of access to resources. Here we demonstrate that this access disparity can result in dataset selection bias, causing models to learn a surprising range of spurious associations.")
356
 
357
  gr.Markdown("### Dose-response Relationship")