future-baby / app.py
emirhanbilgic's picture
Update app.py
c9970db verified
raw
history blame
7.42 kB
import gradio as gr
import spaces
import os
import cv2
import torch
from PIL import Image
from insightface.app import FaceAnalysis
from ip_adapter.ip_adapter_faceid import IPAdapterFaceID
from transformers import CLIPFeatureExtractor
from diffusers import StableDiffusionPipeline, EulerDiscreteScheduler, AutoencoderKL
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
import dlib
import imutils
from imutils import face_utils
import numpy as np
from skimage import transform as tf
import random
base_model_path = "SG161222/Realistic_Vision_V6.0_B1_noVAE"
base_cache = "model-cache"
vae_model_path = "stabilityai/sd-vae-ft-mse"
ip_cache = "./ip-cache"
device = "cuda"
# Setup function to load models and other dependencies
def setup():
"""Load the model into memory to make running multiple predictions efficient"""
# Get ip-adapter-faceid model
if not os.path.exists("ip-cache/ip-adapter-faceid_sd15.bin"):
os.makedirs(ip_cache, exist_ok=True)
os.system(f"wget -O ip-cache/ip-adapter-faceid_sd15.bin https://huggingface.co/h94/IP-Adapter-FaceID/resolve/main/ip-adapter-faceid_sd15.bin")
# Download shape_predictor_68_face_landmarks.dat if it doesn't exist
if not os.path.exists("faceid/shape_predictor_68_face_landmarks.dat"):
os.makedirs("faceid", exist_ok=True)
os.system("wget -O faceid/shape_predictor_68_face_landmarks.dat https://github.com/italojs/facial-landmarks-recognition/raw/master/shape_predictor_68_face_landmarks.dat")
# Face embedding
app = FaceAnalysis(name="buffalo_l", providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
app.prepare(ctx_id=0, det_size=(640, 640))
# SD
noise_scheduler = EulerDiscreteScheduler(
num_train_timesteps=1000,
beta_start=0.00085,
beta_end=0.012
)
vae = AutoencoderKL.from_pretrained(
vae_model_path
).to(dtype=torch.float16)
pipe = StableDiffusionPipeline.from_pretrained(
base_model_path,
torch_dtype=torch.float16,
scheduler=noise_scheduler,
vae=vae,
feature_extractor=CLIPFeatureExtractor.from_pretrained("openai/clip-vit-base-patch32"),
safety_checker=StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker"),
cache_dir=base_cache,
)
pipe = pipe.to(device)
# IP adapter
ip_model = IPAdapterFaceID(
pipe,
"ip-cache/ip-adapter-faceid_sd15.bin",
device
)
return app, ip_model
app, ip_model = setup()
def get_face_landmarks(image_path):
def add_padding(image, padding_size=50):
height, width = image.shape[:2]
padded_image = cv2.copyMakeBorder(
image,
top=padding_size,
bottom=padding_size,
left=padding_size,
right=padding_size,
borderType=cv2.BORDER_CONSTANT,
value=[255, 255, 255] # White padding
)
return padded_image
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor('faceid/shape_predictor_68_face_landmarks.dat')
image = cv2.imread(image_path)
image = imutils.resize(image, width=512)
# Add padding to the image
image = add_padding(image)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
rects = detector(gray, 1)
for (i, rect) in enumerate(rects):
shape = predictor(gray, rect)
shape = face_utils.shape_to_np(shape)
return shape, image
def morph_faces(image1_path, image2_path, alpha=0.5):
landmarks1, image1 = get_face_landmarks(image1_path)
landmarks2, image2 = get_face_landmarks(image2_path)
average_landmarks = (landmarks1 + landmarks2) / 2
tform1 = tf.estimate_transform('similarity', landmarks1, average_landmarks)
tform2 = tf.estimate_transform('similarity', landmarks2, average_landmarks)
morphed_image1 = tf.warp(image1, inverse_map=tform1.inverse, output_shape=(512, 512))
morphed_image2 = tf.warp(image2, inverse_map=tform2.inverse, output_shape=(512, 512))
morphed_image = (1 - alpha) * morphed_image1 + alpha * morphed_image2
morphed_image = (morphed_image * 255).astype(np.uint8) # Convert to [0, 255] range
output_path = "tmp.png"
cv2.imwrite(output_path, morphed_image)
return output_path
def get_negative_prompt(gender):
if gender == "Boy":
return "(mascara, makeup: 1.4), (breasts, boobs, naked, nude: 1.4), (deformed iris, deformed pupils, semi-realistic, cgi, 3d, render, sketch, cartoon, drawing, anime, mutated hands and fingers:1.4), (deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, disconnected limbs, mutation, mutated, ugly, disgusting, amputation"
elif gender == "Girl":
return "(beard, mustache, male features: 1.4), (naked, nude: 1.4), (deformed iris, deformed pupils, semi-realistic, cgi, 3d, render, sketch, cartoon, drawing, anime, mutated hands and fingers:1.4), (deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, disconnected limbs, mutation, mutated, ugly, disgusting, amputation"
else: # Random
return "(deformed iris, deformed pupils, semi-realistic, cgi, 3d, render, sketch, cartoon, drawing, anime, mutated hands and fingers:1.4), (deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, disconnected limbs, mutation, mutated, ugly, disgusting, amputation"
def construct_prompt(base_prompt, additional_prompt, gender):
full_prompt = base_prompt
if gender == "Boy":
full_prompt += ", male child, boy"
elif gender == "Girl":
full_prompt += ", female child, girl"
if additional_prompt:
full_prompt += ", " + additional_prompt
return full_prompt
@spaces.GPU(duration = 40)
def generate_image(face_image_1, face_image_2, additional_prompt, gender):
base_prompt = "portrait of a 6 y.o. child, 8k, HD, happy, perfect eyes, cute"
full_prompt = construct_prompt(base_prompt, additional_prompt, gender)
negative_prompt = get_negative_prompt(gender)
baby_image_path = morph_faces(face_image_1, face_image_2)
def generate_images(faceid_embeds, num_outputs=1):
images = ip_model.generate(
prompt=full_prompt,
negative_prompt=negative_prompt,
faceid_embeds=faceid_embeds,
num_samples=num_outputs,
width=768,
height=768,
num_inference_steps=40,
seed=None
)
return images
faceid_embeds = app.get(cv2.imread(baby_image_path))[0].normed_embedding
faceid_embeds = torch.from_numpy(faceid_embeds).unsqueeze(0)
generated_images = generate_images(faceid_embeds)
return generated_images[0]
# Gradio Interface
gr_interface = gr.Interface(
fn=generate_image,
inputs=[
gr.Image(type="filepath", label="First Face Image"),
gr.Image(type="filepath", label="Second Face Image"),
gr.Textbox(label="Prompt"),
gr.Dropdown(choices=["Boy", "Girl", "Random"], value="Boy", label="Gender")
],
outputs=gr.Image(label="Generated Image"),
title="Face Morphing and Image Generation with Stable Diffusion",
)
gr_interface.launch(share=True)