epalvarez commited on
Commit
b502702
1 Parent(s): d525fec

Upload 3 files

Browse files
Files changed (3) hide show
  1. app.py +138 -0
  2. model_bt.joblib +3 -0
  3. requirements.txt +4 -0
app.py ADDED
@@ -0,0 +1,138 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # +++
2
+ import os
3
+ import uuid
4
+ import joblib
5
+ import json
6
+
7
+ # IMPORTANT: I already installed the package "gradio" in my current Virtual Environment (VEnvDSDIL_gpu_Py3.12) as: pip install -q gradio_client
8
+ # Do NOT install "gradio_client" package again in Anaconda otherwise it will mess up the package.
9
+ import gradio as gr
10
+ import pandas as pd
11
+
12
+ # must install the package "huggingface_hub" first in the current python Virtual Environment, with pip, not with conda, as follows
13
+ # pip install huggingface_hub
14
+ # i.e., in the command line interface within the activated Virtual Environment:
15
+ # (VEnvDSDIL_gpu_Py3.12) epalvarez@DSDILmStation01:~ $ pip install huggingface_hub
16
+ from huggingface_hub import CommitScheduler
17
+ from pathlib import Path
18
+
19
+ # path = Path.cwd()
20
+
21
+ log_file = Path("logs/") / f"data_{uuid.uuid4()}.json"
22
+ log_folder = log_file.parent
23
+
24
+ hf_token = os.environ.get('HF_TOKEN')
25
+ print(hf_token)
26
+
27
+ # Scheduler will log every 2 API calls:
28
+ scheduler = CommitScheduler(
29
+ repo_id="term-deposit-logs",
30
+ repo_type="dataset",
31
+ folder_path=log_folder,
32
+ path_in_repo="data",
33
+ every=2
34
+ )
35
+
36
+ term_deposit_predictor = joblib.load('model_bt.joblib')
37
+
38
+ age_input = gr.Number(label="Age")
39
+ duration_input = gr.Number(label='Duration(Sec)')
40
+ cc_contact_freq_input = gr.Number(label='CC Contact Freq')
41
+ days_since_pc_input = gr.Number(label='Days Since PC')
42
+ pc_contact_freq_input = gr.Number(label='PC Contact Freq')
43
+ job_input = gr.Dropdown(['admin.', 'blue-collar', 'technician', 'services', 'management',
44
+ 'retired', 'entrepreneur', 'self-employed', 'housemaid', 'unemployed',
45
+ 'student', 'unknown'], label="Job")
46
+ marital_status_input = gr.Dropdown(['married', 'single', 'divorced', 'unknown'], label='Marital Status')
47
+ education_input = gr.Dropdown(['experience', 'university degree', 'high school', 'professional.course',
48
+ 'Others', 'illiterate'], label='Education')
49
+ defaulter_input = gr.Dropdown(['no', 'unknown', 'yes'], label='Defaulter')
50
+ home_loan_input = gr.Dropdown(['yes', 'no', 'unknown'], label='Home Loan')
51
+ personal_loan_input = gr.Dropdown(['yes', 'no', 'unknown'], label='Personal Loan')
52
+ communication_type_input = gr.Dropdown(['cellular', 'telephone'], label='Communication Type')
53
+ last_contacted_input = gr.Dropdown(['mar', 'apr', 'may', 'jun', 'jul', 'aug', 'sep', 'oct', 'nov', 'dec'], label='Last Contacted')
54
+ day_of_week_input = gr.Dropdown(['mon', 'tue', 'wed', 'thu', 'fri'], label='Day of Week')
55
+ pc_outcome_input = gr.Dropdown(['nonexistent', 'failure', 'success'], label='PC Outcome')
56
+
57
+
58
+ model_output = gr.Label(label="Subscribed")
59
+
60
+ # -------------------------------------------------------------------------------------------------------------------------------------------------------------
61
+ def predict_term_deposit(age, duration, cc_contact_freq, days_since_pc, pc_contact_freq, job, marital_status, education,
62
+ defaulter, home_loan, personal_loan, communication_type, last_contacted,
63
+ day_of_week, pc_outcome):
64
+ sample = {
65
+ 'Age': age,
66
+ 'Duration(Sec)': duration,
67
+ 'CC Contact Freq': cc_contact_freq,
68
+ 'Days Since PC': days_since_pc,
69
+ 'PC Contact Freq': pc_contact_freq,
70
+ 'Job': job,
71
+ 'Marital Status': marital_status,
72
+ 'Education': education,
73
+ 'Defaulter': defaulter,
74
+ 'Home Loan': home_loan,
75
+ 'Personal Loan': personal_loan,
76
+ 'Communication Type': communication_type,
77
+ 'Last Contacted': last_contacted,
78
+ 'Day of Week': day_of_week,
79
+ 'PC Outcome': pc_outcome,
80
+ }
81
+ data_point = pd.DataFrame([sample])
82
+ prediction = term_deposit_predictor.predict(data_point).tolist()
83
+
84
+ # Push prediction to a dataset repo for logging
85
+ # Each time we get a prediction we will determine if we should log it to a hugging_face dataset according to the schedule definition outside this function
86
+ with scheduler.lock:
87
+ with log_file.open("a") as f:
88
+ f.write(json.dumps(
89
+ {
90
+ 'Age': age,
91
+ 'Duration(Sec)': duration,
92
+ 'CC Contact Freq': cc_contact_freq,
93
+ 'Days Since PC': days_since_pc,
94
+ 'PC Contact Freq': pc_contact_freq,
95
+ 'Job': job,
96
+ 'Marital Status': marital_status,
97
+ 'Education': education,
98
+ 'Defaulter': defaulter,
99
+ 'Home Loan': home_loan,
100
+ 'Personal Loan': personal_loan,
101
+ 'Communication Type': communication_type,
102
+ 'Last Contacted': last_contacted,
103
+ 'Day of Week': day_of_week,
104
+ 'PC Outcome': pc_outcome,
105
+ 'prediction': prediction[0]
106
+ }
107
+ ))
108
+ f.write("\n")
109
+
110
+ return prediction[0]
111
+ # -------------------------------------------------------------------------------------------------------------------------------------------------------------
112
+
113
+ demo = gr.Interface(
114
+ fn=predict_term_deposit,
115
+ inputs=[age_input,
116
+ duration_input,
117
+ cc_contact_freq_input,
118
+ days_since_pc_input,
119
+ pc_contact_freq_input,
120
+ job_input,
121
+ marital_status_input,
122
+ education_input,
123
+ defaulter_input,
124
+ home_loan_input,
125
+ personal_loan_input,
126
+ communication_type_input,
127
+ last_contacted_input,
128
+ day_of_week_input,
129
+ pc_outcome_input],
130
+ outputs=model_output,
131
+ title="Term Deposit Prediction",
132
+ description="This API allows you to predict the person who are going to likely subscribe to the term deposit",
133
+ allow_flagging="auto", # automatically push to the HuggingFace Dataset
134
+ concurrency_limit=8
135
+ )
136
+
137
+ demo.queue()
138
+ demo.launch(share=False) # To create a public link, set "share=True" in launch() .... but if I execute this app.py locally, then I have to have my computer on for the public users to access the browser interface
model_bt.joblib ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e319c10defff26d0aacf01d0e705911d9fe897b788c1fd32b45913c5cf7410e8
3
+ size 9335
requirements.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ scikit-learn==1.5.0
2
+ joblib=1.4.0
3
+ pandas==2.2.2
4
+ numpy==2.0.0