File size: 5,734 Bytes
629126e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import streamlit as st
from PIL import Image
import torch.nn as nn
import timm
import torch
import torchmetrics
from torchmetrics import F1Score,Recall,Accuracy
import torch.optim.lr_scheduler as lr_scheduler
import torchvision.models as models
import lightning.pytorch as pl
import torchvision
from lightning.pytorch.loggers import WandbLogger
import shap
import matplotlib.pyplot as plt
import json 
from transformers import pipeline, set_seed
from transformers import BioGptTokenizer, BioGptForCausalLM
text_model = BioGptForCausalLM.from_pretrained("microsoft/biogpt")
tokenizer = BioGptTokenizer.from_pretrained("microsoft/biogpt")
labels_path = 'skin_labels.json'
from captum.attr import DeepLift , visualization

with open(labels_path) as json_data:
    idx_to_labels = json.load(json_data)



class FineTuneModel(pl.LightningModule):
    def __init__(self, model_name, num_classes, learning_rate, dropout_rate,beta1,beta2,eps):
        super().__init__()
        self.model_name = model_name
        self.num_classes = num_classes
        self.learning_rate = learning_rate
        self.beta1 = beta1
        self.beta2 = beta2
        self.eps = eps
        self.dropout_rate = dropout_rate
        self.model = timm.create_model(self.model_name, pretrained=True,num_classes=self.num_classes)
        self.loss_fn = nn.CrossEntropyLoss()
        self.f1 = F1Score(task='multiclass', num_classes=self.num_classes)
        self.recall = Recall(task='multiclass', num_classes=self.num_classes)
        self.accuracy = Accuracy(task='multiclass', num_classes=self.num_classes)
        
        #for param in self.model.parameters():
            #param.requires_grad = True
        #self.model.classifier= nn.Sequential(nn.Dropout(p=self.dropout_rate),nn.Linear(self.model.classifier.in_features, self.num_classes))
        #self.model.classifier.requires_grad = True
            

    def forward(self, x):
        return self.model(x)

    def training_step(self, batch, batch_idx):
        x, y = batch
        y_hat = self.model(x)
        loss = self.loss_fn(y_hat, y)
        acc =  self.accuracy(y_hat.argmax(dim=1),y)
        f1 = self.f1(y_hat.argmax(dim=1),y)
        recall = self.recall(y_hat.argmax(dim=1),y)
        self.log('train_loss', loss,on_step=False,on_epoch=True)
        self.log('train_acc', acc,on_step=False,on_epoch = True)
        self.log('train_f1',f1,on_step=False,on_epoch=True)
        self.log('train_recall',recall,on_step=False,on_epoch=True)
        return loss
            
    def validation_step(self, batch, batch_idx):
        x, y = batch
        y_hat = self.model(x)
        loss = self.loss_fn(y_hat, y)
        acc =  self.accuracy(y_hat.argmax(dim=1),y)
        f1 = self.f1(y_hat.argmax(dim=1),y)
        recall = self.recall(y_hat.argmax(dim=1),y)
        self.log('val_loss', loss,on_step=False,on_epoch=True)
        self.log('val_acc', acc,on_step=False,on_epoch=True)
        self.log('val_f1',f1,on_step=False,on_epoch=True)
        self.log('val_recall',recall,on_step=False,on_epoch=True)
                
            
    def configure_optimizers(self):
        optimizer = torch.optim.Adam(self.model.parameters(), lr=self.learning_rate,betas=(self.beta1,self.beta2),eps=self.eps)
        scheduler = lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.1)
        return {'optimizer': optimizer, 'lr_scheduler': scheduler}
    
    
    #load model
   
    
    
    

st.markdown("<h1 style='text-align: center; '>Skin Leision Diagnosis</h1>",unsafe_allow_html=True)




# Display a file uploader widget for the user to upload an image

uploaded_file = st.file_uploader("Choose an Skin image file", type=["jpg", "jpeg", "png"])

# Load the uploaded image, or display emojis if no file was uploaded
with st.container():
    if uploaded_file is not None:
        
        image = Image.open(uploaded_file)
        st.image(image, caption='Diagnosis', use_column_width=True)
        model = timm.create_model(model_name='efficientnet_b0', pretrained=True,num_classes=4)
        data_cfg = timm.data.resolve_data_config(model.pretrained_cfg)
        transform = timm.data.create_transform(**data_cfg)
        model_transforms = torchvision.transforms.Compose([transform])
        transformed_image = model_transforms(image)
        brain_model = torch.load('models/timm_skin_model.pth')
        
        brain_model.eval()
        with torch.inference_mode():
            with st.progress(100):
                
                #class_names = ['Glinomia','Meningomia','notumar','pituary']
                prediction = torch.nn.functional.softmax(brain_model(transformed_image.unsqueeze(dim=0))[0], dim=0)
                prediction_score, pred_label_idx = torch.topk(prediction, 1)
                pred_label_idx.squeeze_()
                predicted_label = idx_to_labels[str(pred_label_idx.item())]
                st.write( f'Predicted Label: {predicted_label}')
                if st.button('Know More'):
                    generator = pipeline("text-generation",model=text_model,tokenizer=tokenizer)
                    input_text = f"Patient has {predicted_label} and is advised to take the following medicines:"
                    with st.spinner('Generating Text'):
                        generator(input_text, max_length=300, do_sample=True, top_k=50, top_p=0.95, num_return_sequences=1)
                    st.markdown(generator(input_text, max_length=300, do_sample=True, top_k=50, top_p=0.95, num_return_sequences=1)[0]['generated_text'])
                
                    
            
            
            
            

    
        
        
    
        
        
    else:
        st.success("Please upload an image file 🧠")