Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +71 -0
- requirements.txt +3 -0
app.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import whisperx
|
2 |
+
import streamlit as st
|
3 |
+
import torch
|
4 |
+
import tempfile
|
5 |
+
import subprocess
|
6 |
+
|
7 |
+
|
8 |
+
def transcribe(audio_file):
|
9 |
+
|
10 |
+
|
11 |
+
if torch.cuda.is_available():
|
12 |
+
device = "gpu"
|
13 |
+
else:
|
14 |
+
device = "cpu"
|
15 |
+
batch_size = 16 # reduce if low on GPU mem
|
16 |
+
compute_type = "int8" # change to "float16" if high on GPU mem (may reduce accuracy)
|
17 |
+
YOUR_HF_TOKEN = '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'
|
18 |
+
|
19 |
+
# load audio file
|
20 |
+
audio_bytes = uploaded_file.getvalue()
|
21 |
+
with open(temp_file, 'wb') as f:
|
22 |
+
f.write(audio_bytes)
|
23 |
+
|
24 |
+
# 1. Transcribe with original whisper (batched)
|
25 |
+
model = whisperx.load_model("tiny", device = device, compute_type=compute_type)
|
26 |
+
|
27 |
+
audio = whisperx.load_audio(temp_file)
|
28 |
+
result = model.transcribe(audio, batch_size=batch_size)
|
29 |
+
st.write("Transcribed! Here's what we have so far:")
|
30 |
+
st.write(result["segments"]) # before alignment
|
31 |
+
|
32 |
+
# delete model if low on GPU resources
|
33 |
+
# import gc; gc.collect(); torch.cuda.empty_cache(); del model
|
34 |
+
|
35 |
+
# 2. Align whisper output
|
36 |
+
model_a, metadata = whisperx.load_align_model(language_code=result["language"], device=device)
|
37 |
+
result = whisperx.align(result["segments"], model_a, metadata, audio, device, return_char_alignments=False)
|
38 |
+
st.write("Aligned! Here's what we have so far:")
|
39 |
+
st.write(result["segments"]) # after alignment
|
40 |
+
|
41 |
+
# delete model if low on GPU resources
|
42 |
+
# import gc; gc.collect(); torch.cuda.empty_cache(); del model_a
|
43 |
+
|
44 |
+
# 3. Assign speaker labels
|
45 |
+
diarize_model = whisperx.DiarizationPipeline(use_auth_token=YOUR_HF_TOKEN, device=device)
|
46 |
+
|
47 |
+
# add min/max number of speakers if known
|
48 |
+
diarize_segments = diarize_model(audio_file)
|
49 |
+
# diarize_model(audio_file, min_speakers=min_speakers, max_speakers=max_speakers)
|
50 |
+
|
51 |
+
result = whisperx.assign_word_speakers(diarize_segments, result)
|
52 |
+
st.write(diarize_segments)
|
53 |
+
st.write(result["segments"]) # segments are now assigned speaker IDs
|
54 |
+
|
55 |
+
|
56 |
+
st.title("Automated Transcription")
|
57 |
+
|
58 |
+
form = st.form(key='my_form')
|
59 |
+
uploaded_file = form.file_uploader("Choose a file")
|
60 |
+
|
61 |
+
submit = form.form_submit_button("Transcribe!")
|
62 |
+
|
63 |
+
|
64 |
+
if submit:
|
65 |
+
#temporary file to store audio_file
|
66 |
+
tmp_dir = tempfile.TemporaryDirectory()
|
67 |
+
temp_file = tmp_dir.name + '/mono.wav'
|
68 |
+
cmd = f"ffmpeg -y -i {uploaded_file} -acodec pcm_s16le -ar 16000 -ac 1 {temp_file}"
|
69 |
+
subprocess.Popen(cmd, shell=True).wait()
|
70 |
+
|
71 |
+
transcribe(temp_file)
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
git+https://github.com/m-bain/whisperx.git
|
2 |
+
streamlit
|
3 |
+
pandas
|