Spaces:
Runtime error
Runtime error
File size: 12,211 Bytes
e56055d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 |
import torch
import torch.nn as nn
import torch.nn.functional as F
import copy
import transformers
import higher
import logging
from higher.patch import monkeypatch as make_functional
from collections import defaultdict
from editable_model import EditableModel
from hooks import hook_model
import nn as local_nn
from utils import _logits, _inner_params
LOG = logging.getLogger(__name__)
def update_counter(x, m, s, k):
new_m = m + (x - m) / k
new_s = s + (x - m) * (x - new_m)
return new_m, new_s
class GradientTransform(nn.Module):
def __init__(self, x_dim: int, delta_dim: int, cfg, n_modes = None):
super().__init__()
self.x_dim = x_dim
self.delta_dim = delta_dim
self.cfg = cfg
if cfg.combine and (cfg.one_sided or cfg.x_only or cfg.delta_only):
raise ValueError("cfg.combine cannot be used with one-sided MEND variants")
self.norm_init = False
self.register_buffer("u_mean", torch.full((x_dim,), float("nan")))
self.register_buffer("v_mean", torch.full((delta_dim,), float("nan")))
self.register_buffer("u_std", torch.full((x_dim,), float("nan")))
self.register_buffer("v_std", torch.full((delta_dim,), float("nan")))
self.register_buffer("u_s", torch.full((x_dim,), float("nan")))
self.register_buffer("v_s", torch.full((delta_dim,), float("nan")))
self.register_buffer("k", torch.full((1,), float("nan")))
MlpClass = getattr(local_nn, cfg.mlp_class)
LOG.info(f"Building Gradient Transform with MLP class {MlpClass}")
def delta_net():
return MlpClass(delta_dim, delta_dim, delta_dim * 2, cfg.n_hidden, init=cfg.init, act=cfg.act, rank=cfg.rank, n_modes=n_modes)
def x_net():
return MlpClass(x_dim, x_dim, x_dim * 2, cfg.n_hidden, init=cfg.init, act=cfg.act, rank=cfg.rank, n_modes=n_modes)
def combined_net():
return MlpClass(delta_dim + x_dim, delta_dim + x_dim, (delta_dim + x_dim) * 2,
cfg.n_hidden, init=cfg.init, act=cfg.act, rank=cfg.rank, n_modes=n_modes)
def ID():
return lambda x, mode=None: x
if cfg.combine:
self.mlp = combined_net()
elif cfg.one_sided:
if x_dim > delta_dim:
self.mlp1, self.mlp2 = ID(), delta_net()
else:
self.mlp1, self.mlp2 = x_net(), ID()
elif cfg.x_only:
self.mlp1, self.mlp2 = x_net(), ID()
elif cfg.delta_only:
self.mlp1, self.mlp2 = ID(), delta_net()
else:
self.mlp1, self.mlp2 = x_net(), delta_net()
def forward(self, u, v, param_idx=None):
u, v = u.to(torch.float32), v.to(torch.float32)
u_ = u.view(-1, u.shape[-1])
v_ = v.view(-1, v.shape[-1])
nz_mask = (u_ != 0).any(-1) * (v_ != 0).any(-1) # Skip batch elements with zero grad
u_ = u_[nz_mask]
v_ = v_[nz_mask]
if self.training:
for idx in range(u_.shape[0]):
if not self.norm_init:
self.u_mean = u_[idx].clone().detach()
self.v_mean = v_[idx].clone().detach()
self.u_s.zero_()
self.v_s.zero_()
self.k[:] = 1
self.norm_init = True
else:
self.k += 1
self.u_mean, self.u_s = update_counter(u_[idx], self.u_mean, self.u_s, self.k)
self.v_mean, self.v_s = update_counter(v_[idx], self.v_mean, self.v_s, self.k)
if self.k < 2:
raise RuntimeError(f"Can't perform normalization with only {self.k} samples so far")
self.u_std = (self.u_s / (self.k - 1)) ** 0.5
self.v_std = (self.v_s / (self.k - 1)) ** 0.5
if self.cfg.norm:
u_input = (u_ - self.u_mean) / (self.u_std + 1e-7)
v_input = (v_ - self.v_mean) / (self.v_std + 1e-7)
else:
u_input = u_
v_input = v_
if self.cfg.combine:
output = self.mlp(torch.cat((u_input, v_input), -1), mode=param_idx)
out1, out2 = output.split([u.shape[-1], v.shape[-1]], -1)
return out1, out2
else:
return self.mlp1(u_input, mode=param_idx), self.mlp2(v_input, mode=param_idx)
class MEND(EditableModel):
def get_shape(self, p):
# We need to (annoyingly) flip the shapes since OpenAI gpt2 uses convs instead of linear
return p.shape if isinstance(self.model, transformers.GPT2LMHeadModel) else (p.shape[1], p.shape[0])
def __init__(self, model, config, model_constructor, gtn=None, edit_lrs=None):
super().__init__(model, config, model_constructor)
if edit_lrs is None:
edit_lrs = nn.Parameter(torch.tensor([config.edit_lr] * len(self.config.model.inner_params)))
self.edit_lrs = edit_lrs
if not hasattr(self.model, "handles"):
hook_model(self.model, self.config.model.inner_params)
LOG.info(f"Hooked {len(self.model.handles)//2} modules")
if config.gtn.shared:
shape_dict = defaultdict(list)
for n, p in _inner_params(model.named_parameters(), self.config.model.inner_params):
shape_dict[self.get_shape(p)].append(n)
self.shape_dict = shape_dict
if gtn is None:
if not config.gtn.shared:
self.gtn = nn.ModuleDict({
n.replace(".", "#"): GradientTransform(*self.get_shape(p), config.gtn)
for (n, p) in _inner_params(model.named_parameters(), self.config.model.inner_params)
})
else:
self.gtn = nn.ModuleDict({
str(tuple(s)): GradientTransform(*s, config.gtn, len(shape_dict[s]))
for s in shape_dict.keys()
})
else:
self.gtn = gtn
def state_dict(self, destination=None, prefix="", keep_vars=False):
state_dict = super().state_dict(prefix=prefix, keep_vars=keep_vars) # Get default state dict
model_keys = self.model.state_dict(prefix=prefix, keep_vars=keep_vars).keys() # Remove model params
for k in model_keys:
del state_dict[f"model.{k}"]
state_dict["model_config"] = self.model.config # Include model config
return state_dict
def load_state_dict(self, state_dict, strict: bool = True):
config = state_dict["model_config"]
del state_dict["model_config"]
if config != self.model.config:
LOG.info("Loaded model config doesn't match current model config.")
LOG.info(f"Loaded: {config}")
LOG.info(f"Current: {self.model.config}")
res = super().load_state_dict(state_dict, False)
# We should only have missing keys for the model, and no unexpected keys
assert len([k for k in res.missing_keys if not k.startswith("model.")]) == 0, "Should only have missing keys for model."
assert len(res.unexpected_keys) == 0, "Shouldn't have any unexpected keys"
return res
def outer_parameters(self, grouped=False):
if grouped:
return [
dict(params=list(self.gtn.parameters()), lr=self.config.lr),
dict(params=[self.edit_lrs], lr=self.config.lr_lr)
]
else:
return list(self.gtn.parameters()) + [self.edit_lrs]
def edit(self, batch, condition=None, detach_history=False):
outputs = _logits(self.model(**batch))
loss = self.edit_loss_fn(outputs, batch["labels"])["nll"]
names = set([n for n, p in self.model.named_parameters()])
pset = set(self.config.model.inner_params)
for p in pset:
assert p in names, f"inner param {p} not in model"
loss.backward()
if self.config.gtn.shared:
param_idx = lambda n, p: self.shape_dict[self.get_shape(p)].index(n) if self.config.gtn.shared else None # noqa: E731
transformed_factors = {
n: self.gtn[str(tuple(self.get_shape(p)))](p.__x__, p.__delta__, param_idx(n, p))
for n, p in _inner_params(self.model.named_parameters(), self.config.model.inner_params)
}
else:
transformed_factors = {
n: self.gtn[n.replace(".", "#")](p.__x__, p.__delta__)
for n, p in _inner_params(self.model.named_parameters(), self.config.model.inner_params)
}
# Should be bi,bj->ji for nn.Linear, but [annoying] GPT2 uses Conv1d instead...
if isinstance(self.model, transformers.GPT2LMHeadModel):
targ = "ij"
else:
targ = "ji"
mean_grads = {
n: torch.einsum(f"bi,bj->{targ}", x, delta)
for n, (x, delta) in transformed_factors.items()
}
info_dict = {}
idx = 0
for n, p in _inner_params(self.model.named_parameters(), self.config.model.inner_params):
info_dict[f"grad/true_mag{idx}"] = p.grad.norm(2).item()
info_dict[f"grad/pseudo_mag{idx}"] = mean_grads[n].norm(2).item()
info_dict[f"grad/true_std{idx}"] = p.grad.std().item()
info_dict[f"grad/pseudo_std{idx}"] = mean_grads[n].std().item()
info_dict[f"grad/diff{idx}"] = (p.grad - mean_grads[n]).norm(2).item()
info_dict[f"grad/cos{idx}"] = F.cosine_similarity(p.grad.reshape(-1), mean_grads[n].reshape(-1), dim=0).item()
idx += 1
self.model.zero_grad()
assert len(self.edit_lrs) == len(list(mean_grads.items()))
updates = {n: lr * g for lr, (n, g) in zip(self.edit_lrs, mean_grads.items())}
edited_model = self.model
if not isinstance(edited_model, higher.patch._MonkeyPatchBase):
edited_model = make_functional(edited_model, in_place=True)
new_params = []
for n, p in edited_model.named_parameters():
if n in pset:
if self.config.gtn.descent:
new_params.append(p - updates[n])
else:
new_params.append(p + updates[n])
else:
new_params.append(p)
edited_model.update_params(new_params)
if detach_history:
new_model = self.model_constructor()
new_model.load_state_dict(edited_model.state_dict())
edited_model = new_model
return MEND(edited_model, self.config, self.model_constructor, self.gtn, edit_lrs=self.edit_lrs), info_dict
if __name__ == '__main__':
import types
model = transformers.GPT2LMHeadModel.from_pretrained("gpt2")
config = types.SimpleNamespace()
config.model.inner_params = [
"transformer.h.9.mlp.c_fc.weight",
"transformer.h.9.mlp.c_proj.weight",
"transformer.h.10.mlp.c_fc.weight",
"transformer.h.10.mlp.c_proj.weight",
"transformer.h.11.mlp.c_fc.weight",
"transformer.h.11.mlp.c_proj.weight",
]
config.edit_lr = 0.0001
config.gtn = types.SimpleNamespace()
config.gtn.n_hidden = 1
config.gtn = config.gtn.__dict__
gtn = MEND(model, config, lambda: copy.deepcopy(model)).cuda()
# torch.save(gtn.state_dict(), "test_state.pt")
import pdb; pdb.set_trace()
gtn.load_state_dict(torch.load("test_state.pt"))
x = torch.arange(20).view(1, 20).cuda() + 1000
orig_logits = gtn(x)
edited = gtn.edit(x, masks=torch.ones_like(x), labels=x)
post_logits = gtn(x)
assert torch.allclose(orig_logits, post_logits)
orig_param = [p for (n, p) in gtn.model.named_parameters() if n == config.model.inner_params[-1]][0]
edited_param = [p for (n, p) in edited.model.named_parameters() if n == config.model.inner_params[-1]][0]
LOG.info((orig_param - edited_param).abs().max())
edited.eval()
LOG.info(gtn(x, labels=x).loss, edited(x, labels=x).loss, edited.edit_loss_fn(edited(x).logits, x)["nll"])
edited2 = edited.edit(x, masks=torch.ones_like(x), labels=x)
LOG.info(gtn(x, labels=x).loss, edited(x, labels=x).loss, edited2(x, labels=x).loss)
|