import streamlit as st import pandas as pd import time import copy import importlib from torch.cuda import is_available as use_cuda import algs import config from transformers import AutoTokenizer, AutoModelForSeq2SeqLM import utils EDIT_ALGS = [ "MEND: Model editor networks using gradient decomposition", "SERAC: Semi-parametric editing with a retrieval-augmented counterfactual model", "ENN: Editable neural networks", "KE: KnowledgeEditor", "FT: Fine-tuning", "LU: Lookup Cache", ] def get_alg_class(alg_abbrv): alg_module = importlib.import_module(f"algs.{alg_abbrv.lower()}") alg_class = getattr(alg_module, alg_abbrv.upper()) return alg_class def load_editable_model(alg_abbrv): alg_module = importlib.import_module(f"algs.{alg_abbrv.lower()}") alg_class = getattr(alg_module, alg_abbrv.upper()) st.session_state.config = getattr(config, f"{alg_abbrv.lower()}_config") with st.spinner('Loading model...'): st.session_state.editable_model = alg_class( st.session_state.model, st.session_state.config, lambda: copy.deepcopy(st.session_state.model), ).eval() if "archive" in st.session_state.config: archive, st.session_state.config.archive = utils.load_archive(str(st.session_state.config.archive)) print(f"Loading archive from {st.session_state.config.archive}") st.session_state.editable_model.load_state_dict(archive["model"]) def generate(ids): output_ids = st.session_state.editable_model.generate(input_ids=ids, max_new_tokens=20, min_length=1, num_return_sequences=1, num_beams=3) return st.session_state.tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0] def reset(): st.session_state.edits.drop(st.session_state.edits.index, inplace=True) st.session_state.model_outputs.drop(st.session_state.edits.index, inplace=True) selected_alg = st.session_state.alg_selector alg_abbrv = selected_alg[:selected_alg.index(":")] load_editable_model(alg_abbrv) def apply_edit(): st.session_state.edits.loc[len(st.session_state.edits)] = [str(edit_input), str(edit_label)] with st.spinner("Editing model..."): input_ids = st.session_state.tokenizer(str(edit_input), return_tensors="pt")["input_ids"].to(st.session_state.device) label_ids = st.session_state.tokenizer(str(edit_label), return_tensors="pt")["input_ids"].to(st.session_state.device) edit_sample = {"input_ids": input_ids, "labels": label_ids} st.session_state.editable_model, _ = st.session_state.editable_model.edit(edit_sample, detach_history=True) def sample_model(): input_str = str(test_input) with st.spinner('Generating completion...'): encoding = st.session_state.tokenizer(input_str, return_tensors="pt") ids = encoding["input_ids"].to(st.session_state.device) model_output = generate(ids) n_edits = len(st.session_state.edits) alg_name = st.session_state.alg_selector alg_abbrv = alg_name[:alg_name.index(":")] st.session_state.model_outputs.loc[len(st.session_state.model_outputs)] = [input_str, model_output, n_edits, alg_abbrv] ################################ #### Backend initialization #### ################################ if "init" not in st.session_state: st.session_state.edits = pd.DataFrame([], columns=["Edit input", "Edit label"]) st.session_state.model_outputs = pd.DataFrame([], columns=["Input", "Output", "N edits", "Alg"]) st.session_state.init = True st.session_state.device = "cpu" # "cuda" if use_cuda() else "cpu" with st.spinner('Loading model...'): st.session_state.tokenizer = AutoTokenizer.from_pretrained("google/t5-large-ssm-nq") st.session_state.model = AutoModelForSeq2SeqLM.from_pretrained("google/t5-large-ssm-nq").to(st.session_state.device).eval() # There is a "Loading model..." spinner in load_editable_model alg_abbrv = "MEND" # Default initial alg of dropdown selector load_editable_model(alg_abbrv) ######################## #### Interface code #### ######################## st.title("Language Model Editing") st.markdown("**Note: this HF space is currently under development and doesn't actually work yet!**") st.markdown("The goal of this demo is to give you a sense of the *abilities* and *limitations* of existing methods for **editing** pre-trained language models. **Model editing** algorithms use a single input-output pair to update a pre-trained model's behavior for that input (and ideally, related inputs).") st.markdown("This demo uses a [T5-large](https://huggingface.co/google/t5-large-ssm-nq) model fine-tuned on [Natural Questions](https://arxiv.org/pdf/2002.08910.pdf) as the base pre-trained model.") st.write("You can choose from a variety of algorithms for model editing in the dropdown below. At the bottom of the page, you can query the model for whatever input you want before/after editing.") st.markdown("***") col1, col2 = st.columns([5,1]) with col1: alg_selector = st.selectbox("Editing algorithm:", EDIT_ALGS, key="alg_selector", on_change=reset) with col2: st.text("ㅤ") st.button("Clear edits", on_click=reset) st.write("Edits applied so far:") st.table(st.session_state.edits) col1, col2, col3 = st.columns([3, 2, 1]) with col1: edit_input = st.text_input("Edit input:", placeholder="e.g., 'What is the tallest mountain on Earth?'") with col2: edit_label = st.text_input("Edit target:", placeholder="e.g., 'Denali'") with col3: st.text("ㅤ") edit_button = st.button("Apply edit", on_click=apply_edit) st.markdown("***") if len(st.session_state.edits) == 0: title = "Input to sample from *unedited* model:" else: title = f"Input to sample from *edited* model:" col1, col2 = st.columns([5, 1]) with col1: test_input = st.text_input(title, placeholder="e.g., 'What is the earth's tallest mountain?'") with col2: st.text("ㅤ") generate_button = st.button("Generate", on_click=sample_model) st.write("Model generation history:") st.table(st.session_state.model_outputs)