import torch import torch.nn as nn import higher from higher.patch import monkeypatch as make_functional import time from editable_model import EditableModel from utils import _logits, _inner_params from losses import kl_loc_loss class FT(EditableModel): """ Fine-tuning approach. Does not require training. """ def __init__(self, model, config, model_constructor, edit_loss_fn=None): super().__init__(model, config, model_constructor) if edit_loss_fn is not None: self.edit_loss_fn = edit_loss_fn self.locality_loss_fn = kl_loc_loss self.loc_ids = None self.loc_masks = None self.loc_sampler = None def _edit_loss(self, model, p0, p_edited, edit_batch): output = _logits(model(**edit_batch, params=p_edited)) loss_dict = self.edit_loss_fn(output, edit_batch["labels"]) l_edit, acc = loss_dict["nll"], loss_dict["acc"] if self.config.ft.locality.enabled: if self.config.ft.locality.oracle: loc_batch = next(self.loc_sampler)["loc"] else: raise NotImplementedError with torch.no_grad(): original_base_logits = _logits(model(**loc_batch, params=p0)) edited_base_logits = _logits(model(**loc_batch, params=p_edited)) kl_mask = loc_batch.get("decoder_attention_mask", loc_batch["attention_mask"]) l_loc = self.locality_loss_fn(original_base_logits, edited_base_logits, mask=kl_mask) loss = l_loc + self.config.ft.locality.cedit * l_edit else: l_loc = torch.tensor(float('nan')) loss = l_edit return loss, l_edit, l_loc, acc def accuracy(self, output, labels): if output.shape[-1] != 1: shifted_output = output.argmax(-1)[:, :-1] shifted_labels = labels[:, 1:] to_predict = (shifted_labels != -100).sum() correct = (shifted_output == shifted_labels).sum() acc = correct.float() / to_predict.float() else: acc = ((output > 0) == labels.bool()).sum().float() return acc def _edit_status(self, step, loss, l_edit, l_loc, acc, res_p): return ( f"step: {step}".ljust(14) + f"loss: {loss.item():.5f}".ljust(18) + f"l_edit: {l_edit.item():.5f}".ljust(18) + f"l_loc: {l_loc.item():.5f}".ljust(18) + f"acc: {acc.item():.2f}".ljust(14) + f"norm: {res_p.view(-1).norm().item():.5f}" ) def edit(self, batch, condition=None, detach_history=False): edit_model = self.model.eval() p0 = list(edit_model.named_parameters()) if not isinstance(edit_model, higher.patch._MonkeyPatchBase): edit_model = make_functional(self.model, track_higher_grads=False, in_place=True) packed_residuals = {} opt_params = [] for n, p in _inner_params(edit_model.named_parameters(), self.config.model.inner_params): if self.config.ft.rank is not None: u = nn.Parameter(torch.randn(p.shape[0], self.config.ft.rank, device=p.device) * self.config.ft.init_std) v = nn.Parameter(torch.zeros(self.config.ft.rank, p.shape[1], device=p.device)) res = [u, v] else: res = [nn.Parameter(torch.zeros_like(p, device=p.device))] packed_residuals[n] = res opt_params.extend(res) assert len(opt_params) == len(self.config.model.inner_params) OptClass = getattr(torch.optim, self.config.ft.opt) opt = OptClass(opt_params, lr=self.config.edit_lr) start_time = time.time() for edit_step in range(self.config.ft.max_edit_steps): if self.config.ft.time_limit is not None and (time.time() - start_time > self.config.ft.time_limit): break residuals = {k: v[0] @ v[1] if len(v) == 2 else v[0] for k, v in packed_residuals.items()} edited_params = [p if n not in residuals else p.detach() + residuals[n] for n, p in p0] loss, l_edit, l_loc, acc = self._edit_loss(edit_model, [p for n, p in p0], edited_params, batch) if self.config.ft.verbose: residual = list(residuals.values())[-1] print(self._edit_status(edit_step, loss, l_edit, l_loc, acc, residual), end="\r") if acc == 1.0: break for p, g in zip(opt_params, torch.autograd.grad(loss, opt_params)): p.grad = g torch.nn.utils.clip_grad_norm_(opt_params, self.config.grad_clip) opt.step() opt.zero_grad() if detach_history: new_model = self.model_constructor() new_model.load_state_dict(edit_model.state_dict()) edit_model = new_model edit_model.train(self.training) return FT(edit_model, self.config, self.model_constructor, self.edit_loss_fn), {}