demonmittenhands
commited on
Commit
•
edda0ff
1
Parent(s):
4d75887
gradio stuff
Browse files
app.py
CHANGED
@@ -36,7 +36,14 @@ scheduler = CommitScheduler(
|
|
36 |
# Define the predict function which will take features, convert to dataframe and make predictions using the saved model
|
37 |
# the functions runs when 'Submit' is clicked or when a API request is made
|
38 |
def predict(age, bmi, children, sex, smoker, region):
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
input = {
|
41 |
"age": age,
|
42 |
"bmi": bmi,
|
@@ -47,7 +54,7 @@ def predict(age, bmi, children, sex, smoker, region):
|
|
47 |
}
|
48 |
|
49 |
input_df = pd.DataFrame([input])
|
50 |
-
prediction = insurance_model.predict(input_df)
|
51 |
|
52 |
# While the prediction is made, log both the inputs and outputs to a log file
|
53 |
# While writing to the log file, ensure that the commit scheduler is locked to avoid parallel
|
@@ -77,8 +84,8 @@ def predict(age, bmi, children, sex, smoker, region):
|
|
77 |
age_input = gr.Number(label="Age")
|
78 |
bmi_input = gr.Number(label="BMI")
|
79 |
children_input = gr.Slider(minimum=0.0, maximum=15.0, step=1.0, label="Children")
|
80 |
-
sex_input = gr.
|
81 |
-
smoker_input = gr.
|
82 |
region_input = gr.Dropdown(['southwest', 'southeast', 'northwest', 'northeast'], label="region")
|
83 |
output = gr.Label(label="Insurance Price")
|
84 |
|
@@ -97,4 +104,5 @@ demo = gr.Interface(
|
|
97 |
# Launch with a load balancer
|
98 |
# these two lines were in the file already
|
99 |
demo.queue()
|
|
|
100 |
demo.launch(share=False)
|
|
|
36 |
# Define the predict function which will take features, convert to dataframe and make predictions using the saved model
|
37 |
# the functions runs when 'Submit' is clicked or when a API request is made
|
38 |
def predict(age, bmi, children, sex, smoker, region):
|
39 |
+
# input2 = {
|
40 |
+
# "age": 10,
|
41 |
+
# "bmi": 30,
|
42 |
+
# "children": 6,
|
43 |
+
# "sex": 'female',
|
44 |
+
# "smoker": 'yes',
|
45 |
+
# "region": 'northwest'
|
46 |
+
# }
|
47 |
input = {
|
48 |
"age": age,
|
49 |
"bmi": bmi,
|
|
|
54 |
}
|
55 |
|
56 |
input_df = pd.DataFrame([input])
|
57 |
+
prediction = insurance_model.predict(input_df)
|
58 |
|
59 |
# While the prediction is made, log both the inputs and outputs to a log file
|
60 |
# While writing to the log file, ensure that the commit scheduler is locked to avoid parallel
|
|
|
84 |
age_input = gr.Number(label="Age")
|
85 |
bmi_input = gr.Number(label="BMI")
|
86 |
children_input = gr.Slider(minimum=0.0, maximum=15.0, step=1.0, label="Children")
|
87 |
+
sex_input = gr.Radio(['male', 'female'], label="sex")
|
88 |
+
smoker_input = gr.Radio(choices=['yes', 'no'], label="smoker")
|
89 |
region_input = gr.Dropdown(['southwest', 'southeast', 'northwest', 'northeast'], label="region")
|
90 |
output = gr.Label(label="Insurance Price")
|
91 |
|
|
|
104 |
# Launch with a load balancer
|
105 |
# these two lines were in the file already
|
106 |
demo.queue()
|
107 |
+
# demo.launch(share=True, debug=True)
|
108 |
demo.launch(share=False)
|