Spaces:
Build error
Build error
File size: 20,845 Bytes
c145e8a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from opt_einsum import contract as einsum
import torch.utils.checkpoint as checkpoint
from util import cross_product_matrix
from util_module import *
from Attention_module import *
from SE3_network import SE3TransformerWrapper
from icecream import ic
# Components for three-track blocks
# 1. MSA -> MSA update (biased attention. bias from pair & structure)
# 2. Pair -> Pair update (biased attention. bias from structure)
# 3. MSA -> Pair update (extract coevolution signal)
# 4. Str -> Str update (node from MSA, edge from Pair)
# Update MSA with biased self-attention. bias from Pair & Str
class MSAPairStr2MSA(nn.Module):
def __init__(self, d_msa=256, d_pair=128, n_head=8, d_state=16,
d_hidden=32, p_drop=0.15, use_global_attn=False):
super(MSAPairStr2MSA, self).__init__()
self.norm_pair = nn.LayerNorm(d_pair)
self.proj_pair = nn.Linear(d_pair+36, d_pair)
self.norm_state = nn.LayerNorm(d_state)
self.proj_state = nn.Linear(d_state, d_msa)
self.drop_row = Dropout(broadcast_dim=1, p_drop=p_drop)
self.row_attn = MSARowAttentionWithBias(d_msa=d_msa, d_pair=d_pair,
n_head=n_head, d_hidden=d_hidden)
if use_global_attn:
self.col_attn = MSAColGlobalAttention(d_msa=d_msa, n_head=n_head, d_hidden=d_hidden)
else:
self.col_attn = MSAColAttention(d_msa=d_msa, n_head=n_head, d_hidden=d_hidden)
self.ff = FeedForwardLayer(d_msa, 4, p_drop=p_drop)
# Do proper initialization
self.reset_parameter()
def reset_parameter(self):
# initialize weights to normal distrib
self.proj_pair = init_lecun_normal(self.proj_pair)
self.proj_state = init_lecun_normal(self.proj_state)
# initialize bias to zeros
nn.init.zeros_(self.proj_pair.bias)
nn.init.zeros_(self.proj_state.bias)
def forward(self, msa, pair, rbf_feat, state):
'''
Inputs:
- msa: MSA feature (B, N, L, d_msa)
- pair: Pair feature (B, L, L, d_pair)
- rbf_feat: Ca-Ca distance feature calculated from xyz coordinates (B, L, L, 36)
- xyz: xyz coordinates (B, L, n_atom, 3)
- state: updated node features after SE(3)-Transformer layer (B, L, d_state)
Output:
- msa: Updated MSA feature (B, N, L, d_msa)
'''
B, N, L = msa.shape[:3]
# prepare input bias feature by combining pair & coordinate info
pair = self.norm_pair(pair)
pair = torch.cat((pair, rbf_feat), dim=-1)
pair = self.proj_pair(pair) # (B, L, L, d_pair)
#
# update query sequence feature (first sequence in the MSA) with feedbacks (state) from SE3
state = self.norm_state(state)
state = self.proj_state(state).reshape(B, 1, L, -1)
msa = msa.index_add(1, torch.tensor([0,], device=state.device), state.type(torch.float32))
#
# Apply row/column attention to msa & transform
msa = msa + self.drop_row(self.row_attn(msa, pair))
msa = msa + self.col_attn(msa)
msa = msa + self.ff(msa)
return msa
class PairStr2Pair(nn.Module):
def __init__(self, d_pair=128, n_head=4, d_hidden=32, d_rbf=36, p_drop=0.15):
super(PairStr2Pair, self).__init__()
self.emb_rbf = nn.Linear(d_rbf, d_hidden)
self.proj_rbf = nn.Linear(d_hidden, d_pair)
self.drop_row = Dropout(broadcast_dim=1, p_drop=p_drop)
self.drop_col = Dropout(broadcast_dim=2, p_drop=p_drop)
self.row_attn = BiasedAxialAttention(d_pair, d_pair, n_head, d_hidden, p_drop=p_drop, is_row=True)
self.col_attn = BiasedAxialAttention(d_pair, d_pair, n_head, d_hidden, p_drop=p_drop, is_row=False)
self.ff = FeedForwardLayer(d_pair, 2)
self.reset_parameter()
def reset_parameter(self):
nn.init.kaiming_normal_(self.emb_rbf.weight, nonlinearity='relu')
nn.init.zeros_(self.emb_rbf.bias)
self.proj_rbf = init_lecun_normal(self.proj_rbf)
nn.init.zeros_(self.proj_rbf.bias)
def forward(self, pair, rbf_feat):
B, L = pair.shape[:2]
rbf_feat = self.proj_rbf(F.relu_(self.emb_rbf(rbf_feat)))
pair = pair + self.drop_row(self.row_attn(pair, rbf_feat))
pair = pair + self.drop_col(self.col_attn(pair, rbf_feat))
pair = pair + self.ff(pair)
return pair
class MSA2Pair(nn.Module):
def __init__(self, d_msa=256, d_pair=128, d_hidden=32, p_drop=0.15):
super(MSA2Pair, self).__init__()
self.norm = nn.LayerNorm(d_msa)
self.proj_left = nn.Linear(d_msa, d_hidden)
self.proj_right = nn.Linear(d_msa, d_hidden)
self.proj_out = nn.Linear(d_hidden*d_hidden, d_pair)
self.reset_parameter()
def reset_parameter(self):
# normal initialization
self.proj_left = init_lecun_normal(self.proj_left)
self.proj_right = init_lecun_normal(self.proj_right)
nn.init.zeros_(self.proj_left.bias)
nn.init.zeros_(self.proj_right.bias)
# zero initialize output
nn.init.zeros_(self.proj_out.weight)
nn.init.zeros_(self.proj_out.bias)
def forward(self, msa, pair):
B, N, L = msa.shape[:3]
msa = self.norm(msa)
left = self.proj_left(msa)
right = self.proj_right(msa)
right = right / float(N)
out = einsum('bsli,bsmj->blmij', left, right).reshape(B, L, L, -1)
out = self.proj_out(out)
pair = pair + out
return pair
class SCPred(nn.Module):
def __init__(self, d_msa=256, d_state=32, d_hidden=128, p_drop=0.15):
super(SCPred, self).__init__()
self.norm_s0 = nn.LayerNorm(d_msa)
self.norm_si = nn.LayerNorm(d_state)
self.linear_s0 = nn.Linear(d_msa, d_hidden)
self.linear_si = nn.Linear(d_state, d_hidden)
# ResNet layers
self.linear_1 = nn.Linear(d_hidden, d_hidden)
self.linear_2 = nn.Linear(d_hidden, d_hidden)
self.linear_3 = nn.Linear(d_hidden, d_hidden)
self.linear_4 = nn.Linear(d_hidden, d_hidden)
# Final outputs
self.linear_out = nn.Linear(d_hidden, 20)
self.reset_parameter()
def reset_parameter(self):
# normal initialization
self.linear_s0 = init_lecun_normal(self.linear_s0)
self.linear_si = init_lecun_normal(self.linear_si)
self.linear_out = init_lecun_normal(self.linear_out)
nn.init.zeros_(self.linear_s0.bias)
nn.init.zeros_(self.linear_si.bias)
nn.init.zeros_(self.linear_out.bias)
# right before relu activation: He initializer (kaiming normal)
nn.init.kaiming_normal_(self.linear_1.weight, nonlinearity='relu')
nn.init.zeros_(self.linear_1.bias)
nn.init.kaiming_normal_(self.linear_3.weight, nonlinearity='relu')
nn.init.zeros_(self.linear_3.bias)
# right before residual connection: zero initialize
nn.init.zeros_(self.linear_2.weight)
nn.init.zeros_(self.linear_2.bias)
nn.init.zeros_(self.linear_4.weight)
nn.init.zeros_(self.linear_4.bias)
def forward(self, seq, state):
'''
Predict side-chain torsion angles along with backbone torsions
Inputs:
- seq: hidden embeddings corresponding to query sequence (B, L, d_msa)
- state: state feature (output l0 feature) from previous SE3 layer (B, L, d_state)
Outputs:
- si: predicted torsion angles (phi, psi, omega, chi1~4 with cos/sin, Cb bend, Cb twist, CG) (B, L, 10, 2)
'''
B, L = seq.shape[:2]
seq = self.norm_s0(seq)
state = self.norm_si(state)
si = self.linear_s0(seq) + self.linear_si(state)
si = si + self.linear_2(F.relu_(self.linear_1(F.relu_(si))))
si = si + self.linear_4(F.relu_(self.linear_3(F.relu_(si))))
si = self.linear_out(F.relu_(si))
return si.view(B, L, 10, 2)
class Str2Str(nn.Module):
def __init__(self, d_msa=256, d_pair=128, d_state=16,
SE3_param={'l0_in_features':32, 'l0_out_features':16, 'num_edge_features':32}, p_drop=0.1):
super(Str2Str, self).__init__()
# initial node & pair feature process
self.norm_msa = nn.LayerNorm(d_msa)
self.norm_pair = nn.LayerNorm(d_pair)
self.norm_state = nn.LayerNorm(d_state)
self.embed_x = nn.Linear(d_msa+d_state, SE3_param['l0_in_features'])
self.embed_e1 = nn.Linear(d_pair, SE3_param['num_edge_features'])
self.embed_e2 = nn.Linear(SE3_param['num_edge_features']+36+1, SE3_param['num_edge_features'])
self.norm_node = nn.LayerNorm(SE3_param['l0_in_features'])
self.norm_edge1 = nn.LayerNorm(SE3_param['num_edge_features'])
self.norm_edge2 = nn.LayerNorm(SE3_param['num_edge_features'])
self.se3 = SE3TransformerWrapper(**SE3_param)
self.sc_predictor = SCPred(d_msa=d_msa, d_state=SE3_param['l0_out_features'],
p_drop=p_drop)
self.reset_parameter()
def reset_parameter(self):
# initialize weights to normal distribution
self.embed_x = init_lecun_normal(self.embed_x)
self.embed_e1 = init_lecun_normal(self.embed_e1)
self.embed_e2 = init_lecun_normal(self.embed_e2)
# initialize bias to zeros
nn.init.zeros_(self.embed_x.bias)
nn.init.zeros_(self.embed_e1.bias)
nn.init.zeros_(self.embed_e2.bias)
@torch.cuda.amp.autocast(enabled=False)
def forward(self, msa, pair, R_in, T_in, xyz, state, idx, top_k=64, eps=1e-5):
B, N, L = msa.shape[:3]
state = state.type(torch.float32)
mas = msa.type(torch.float32)
pair = pair.type(torch.float32)
R_in = R_in.type(torch.float32)
T_in = T_in.type(torch.float32)
xyz = xyz.type(torch.float32)
#ic(msa.dtype)
#ic(pair.dtype)
#ic(R_in.dtype)
#ic(T_in.dtype)
#ic(xyz.dtype)
#ic(state.dtype)
#ic(idx.dtype)
# process msa & pair features
node = self.norm_msa(msa[:,0])
pair = self.norm_pair(pair)
state = self.norm_state(state)
node = torch.cat((node, state), dim=-1)
node = self.norm_node(self.embed_x(node))
pair = self.norm_edge1(self.embed_e1(pair))
neighbor = get_seqsep(idx)
rbf_feat = rbf(torch.cdist(xyz[:,:,1], xyz[:,:,1]))
pair = torch.cat((pair, rbf_feat, neighbor), dim=-1)
pair = self.norm_edge2(self.embed_e2(pair))
# define graph
if top_k != 0:
G, edge_feats = make_topk_graph(xyz[:,:,1,:], pair, idx, top_k=top_k)
else:
G, edge_feats = make_full_graph(xyz[:,:,1,:], pair, idx, top_k=top_k)
l1_feats = xyz - xyz[:,:,1,:].unsqueeze(2)
l1_feats = l1_feats.reshape(B*L, -1, 3)
# apply SE(3) Transformer & update coordinates
shift = self.se3(G, node.reshape(B*L, -1, 1), l1_feats, edge_feats)
state = shift['0'].reshape(B, L, -1) # (B, L, C)
offset = shift['1'].reshape(B, L, 2, 3)
delTi = offset[:,:,0,:] / 10.0 # translation
R = offset[:,:,1,:] / 100.0 # rotation
Qnorm = torch.sqrt( 1 + torch.sum(R*R, dim=-1) )
qA, qB, qC, qD = 1/Qnorm, R[:,:,0]/Qnorm, R[:,:,1]/Qnorm, R[:,:,2]/Qnorm
delRi = torch.zeros((B,L,3,3), device=xyz.device)
delRi[:,:,0,0] = qA*qA+qB*qB-qC*qC-qD*qD
delRi[:,:,0,1] = 2*qB*qC - 2*qA*qD
delRi[:,:,0,2] = 2*qB*qD + 2*qA*qC
delRi[:,:,1,0] = 2*qB*qC + 2*qA*qD
delRi[:,:,1,1] = qA*qA-qB*qB+qC*qC-qD*qD
delRi[:,:,1,2] = 2*qC*qD - 2*qA*qB
delRi[:,:,2,0] = 2*qB*qD - 2*qA*qC
delRi[:,:,2,1] = 2*qC*qD + 2*qA*qB
delRi[:,:,2,2] = qA*qA-qB*qB-qC*qC+qD*qD
#
## convert vector to rotation matrix
#R_angle = torch.norm(R, dim=-1, keepdim=True) # (B, L, 1)
#cos_angle = torch.cos(R_angle).unsqueeze(2) # (B, L, 1, 1)
#sin_angle = torch.sin(R_angle).unsqueeze(2) # (B, L, 1, 1)
#R_vector = R / (R_angle+eps) # (B, L, 3)
#delRi = cos_angle*torch.eye(3, device=R.device).reshape(1,1,3,3) \
# + sin_angle*cross_product_matrix(R_vector) \
# + (1.0-cos_angle)*einsum('bni,bnj->bnij', R_vector, R_vector)
Ri = einsum('bnij,bnjk->bnik', delRi, R_in)
Ti = delTi + T_in #einsum('bnij,bnj->bni', delRi, T_in) + delTi
alpha = self.sc_predictor(msa[:,0], state)
return Ri, Ti, state, alpha
class IterBlock(nn.Module):
def __init__(self, d_msa=256, d_pair=128,
n_head_msa=8, n_head_pair=4,
use_global_attn=False,
d_hidden=32, d_hidden_msa=None, p_drop=0.15,
SE3_param={'l0_in_features':32, 'l0_out_features':16, 'num_edge_features':32}):
super(IterBlock, self).__init__()
if d_hidden_msa == None:
d_hidden_msa = d_hidden
self.msa2msa = MSAPairStr2MSA(d_msa=d_msa, d_pair=d_pair,
n_head=n_head_msa,
d_state=SE3_param['l0_out_features'],
use_global_attn=use_global_attn,
d_hidden=d_hidden_msa, p_drop=p_drop)
self.msa2pair = MSA2Pair(d_msa=d_msa, d_pair=d_pair,
d_hidden=d_hidden//2, p_drop=p_drop)
#d_hidden=d_hidden, p_drop=p_drop)
self.pair2pair = PairStr2Pair(d_pair=d_pair, n_head=n_head_pair,
d_hidden=d_hidden, p_drop=p_drop)
self.str2str = Str2Str(d_msa=d_msa, d_pair=d_pair,
d_state=SE3_param['l0_out_features'],
SE3_param=SE3_param,
p_drop=p_drop)
def forward(self, msa, pair, R_in, T_in, xyz, state, idx, use_checkpoint=False):
rbf_feat = rbf(torch.cdist(xyz[:,:,1,:], xyz[:,:,1,:]))
if use_checkpoint:
msa = checkpoint.checkpoint(create_custom_forward(self.msa2msa), msa, pair, rbf_feat, state)
pair = checkpoint.checkpoint(create_custom_forward(self.msa2pair), msa, pair)
pair = checkpoint.checkpoint(create_custom_forward(self.pair2pair), pair, rbf_feat)
R, T, state, alpha = checkpoint.checkpoint(create_custom_forward(self.str2str, top_k=0), msa, pair, R_in, T_in, xyz, state, idx)
else:
msa = self.msa2msa(msa, pair, rbf_feat, state)
pair = self.msa2pair(msa, pair)
pair = self.pair2pair(pair, rbf_feat)
R, T, state, alpha = self.str2str(msa, pair, R_in, T_in, xyz, state, idx, top_k=0)
return msa, pair, R, T, state, alpha
class IterativeSimulator(nn.Module):
def __init__(self, n_extra_block=4, n_main_block=12, n_ref_block=4,
d_msa=256, d_msa_full=64, d_pair=128, d_hidden=32,
n_head_msa=8, n_head_pair=4,
SE3_param_full={'l0_in_features':32, 'l0_out_features':16, 'num_edge_features':32},
SE3_param_topk={'l0_in_features':32, 'l0_out_features':16, 'num_edge_features':32},
p_drop=0.15):
super(IterativeSimulator, self).__init__()
self.n_extra_block = n_extra_block
self.n_main_block = n_main_block
self.n_ref_block = n_ref_block
self.proj_state = nn.Linear(SE3_param_topk['l0_out_features'], SE3_param_full['l0_out_features'])
# Update with extra sequences
if n_extra_block > 0:
self.extra_block = nn.ModuleList([IterBlock(d_msa=d_msa_full, d_pair=d_pair,
n_head_msa=n_head_msa,
n_head_pair=n_head_pair,
d_hidden_msa=8,
d_hidden=d_hidden,
p_drop=p_drop,
use_global_attn=True,
SE3_param=SE3_param_full)
for i in range(n_extra_block)])
# Update with seed sequences
if n_main_block > 0:
self.main_block = nn.ModuleList([IterBlock(d_msa=d_msa, d_pair=d_pair,
n_head_msa=n_head_msa,
n_head_pair=n_head_pair,
d_hidden=d_hidden,
p_drop=p_drop,
use_global_attn=False,
SE3_param=SE3_param_full)
for i in range(n_main_block)])
self.proj_state2 = nn.Linear(SE3_param_full['l0_out_features'], SE3_param_topk['l0_out_features'])
# Final SE(3) refinement
if n_ref_block > 0:
self.str_refiner = Str2Str(d_msa=d_msa, d_pair=d_pair,
d_state=SE3_param_topk['l0_out_features'],
SE3_param=SE3_param_topk,
p_drop=p_drop)
self.reset_parameter()
def reset_parameter(self):
self.proj_state = init_lecun_normal(self.proj_state)
nn.init.zeros_(self.proj_state.bias)
self.proj_state2 = init_lecun_normal(self.proj_state2)
nn.init.zeros_(self.proj_state2.bias)
def forward(self, seq, msa, msa_full, pair, xyz_in, state, idx, use_checkpoint=False):
# input:
# seq: query sequence (B, L)
# msa: seed MSA embeddings (B, N, L, d_msa)
# msa_full: extra MSA embeddings (B, N, L, d_msa_full)
# pair: initial residue pair embeddings (B, L, L, d_pair)
# xyz_in: initial BB coordinates (B, L, n_atom, 3)
# state: initial state features containing mixture of query seq, sidechain, accuracy info (B, L, d_state)
# idx: residue index
B, L = pair.shape[:2]
R_in = torch.eye(3, device=xyz_in.device).reshape(1,1,3,3).expand(B, L, -1, -1)
T_in = xyz_in[:,:,1].clone()
xyz_in = xyz_in - T_in.unsqueeze(-2)
state = self.proj_state(state)
R_s = list()
T_s = list()
alpha_s = list()
for i_m in range(self.n_extra_block):
R_in = R_in.detach() # detach rotation (for stability)
T_in = T_in.detach()
# Get current BB structure
xyz = einsum('bnij,bnaj->bnai', R_in, xyz_in) + T_in.unsqueeze(-2)
msa_full, pair, R_in, T_in, state, alpha = self.extra_block[i_m](msa_full, pair,
R_in, T_in, xyz, state, idx,
use_checkpoint=use_checkpoint)
R_s.append(R_in)
T_s.append(T_in)
alpha_s.append(alpha)
for i_m in range(self.n_main_block):
R_in = R_in.detach()
T_in = T_in.detach()
# Get current BB structure
xyz = einsum('bnij,bnaj->bnai', R_in, xyz_in) + T_in.unsqueeze(-2)
msa, pair, R_in, T_in, state, alpha = self.main_block[i_m](msa, pair,
R_in, T_in, xyz, state, idx,
use_checkpoint=use_checkpoint)
R_s.append(R_in)
T_s.append(T_in)
alpha_s.append(alpha)
state = self.proj_state2(state)
for i_m in range(self.n_ref_block):
R_in = R_in.detach()
T_in = T_in.detach()
xyz = einsum('bnij,bnaj->bnai', R_in, xyz_in) + T_in.unsqueeze(-2)
R_in, T_in, state, alpha = self.str_refiner(msa, pair, R_in, T_in, xyz, state, idx, top_k=64)
R_s.append(R_in)
T_s.append(T_in)
alpha_s.append(alpha)
R_s = torch.stack(R_s, dim=0)
T_s = torch.stack(T_s, dim=0)
alpha_s = torch.stack(alpha_s, dim=0)
return msa, pair, R_s, T_s, alpha_s, state
|