Spaces:
Build error
Build error
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# | |
# Permission is hereby granted, free of charge, to any person obtaining a | |
# copy of this software and associated documentation files (the "Software"), | |
# to deal in the Software without restriction, including without limitation | |
# the rights to use, copy, modify, merge, publish, distribute, sublicense, | |
# and/or sell copies of the Software, and to permit persons to whom the | |
# Software is furnished to do so, subject to the following conditions: | |
# | |
# The above copyright notice and this permission notice shall be included in | |
# all copies or substantial portions of the Software. | |
# | |
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | |
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING | |
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER | |
# DEALINGS IN THE SOFTWARE. | |
# | |
# SPDX-FileCopyrightText: Copyright (c) 2021 NVIDIA CORPORATION & AFFILIATES | |
# SPDX-License-Identifier: MIT | |
from abc import ABC, abstractmethod | |
import torch | |
import torch.distributed as dist | |
from torch import Tensor | |
class Metric(ABC): | |
""" Metric class with synchronization capabilities similar to TorchMetrics """ | |
def __init__(self): | |
self.states = {} | |
def add_state(self, name: str, default: Tensor): | |
assert name not in self.states | |
self.states[name] = default.clone() | |
setattr(self, name, default) | |
def synchronize(self): | |
if dist.is_initialized(): | |
for state in self.states: | |
dist.all_reduce(getattr(self, state), op=dist.ReduceOp.SUM, group=dist.group.WORLD) | |
def __call__(self, *args, **kwargs): | |
self.update(*args, **kwargs) | |
def reset(self): | |
for name, default in self.states.items(): | |
setattr(self, name, default.clone()) | |
def compute(self): | |
self.synchronize() | |
value = self._compute().item() | |
self.reset() | |
return value | |
def _compute(self): | |
pass | |
def update(self, preds: Tensor, targets: Tensor): | |
pass | |
class MeanAbsoluteError(Metric): | |
def __init__(self): | |
super().__init__() | |
self.add_state('error', torch.tensor(0, dtype=torch.float32, device='cuda')) | |
self.add_state('total', torch.tensor(0, dtype=torch.int32, device='cuda')) | |
def update(self, preds: Tensor, targets: Tensor): | |
preds = preds.detach() | |
n = preds.shape[0] | |
error = torch.abs(preds.view(n, -1) - targets.view(n, -1)).sum() | |
self.total += n | |
self.error += error | |
def _compute(self): | |
return self.error / self.total | |