makeDEEPROTEIN_GENERATOR / model /Track_module.py
erichilarysmithsr's picture
Duplicate from merle/PROTEIN_GENERATOR
c145e8a
import torch
import torch.nn as nn
import torch.nn.functional as F
from opt_einsum import contract as einsum
import torch.utils.checkpoint as checkpoint
from util import cross_product_matrix
from util_module import *
from Attention_module import *
from SE3_network import SE3TransformerWrapper
from icecream import ic
# Components for three-track blocks
# 1. MSA -> MSA update (biased attention. bias from pair & structure)
# 2. Pair -> Pair update (biased attention. bias from structure)
# 3. MSA -> Pair update (extract coevolution signal)
# 4. Str -> Str update (node from MSA, edge from Pair)
# Update MSA with biased self-attention. bias from Pair & Str
class MSAPairStr2MSA(nn.Module):
def __init__(self, d_msa=256, d_pair=128, n_head=8, d_state=16,
d_hidden=32, p_drop=0.15, use_global_attn=False):
super(MSAPairStr2MSA, self).__init__()
self.norm_pair = nn.LayerNorm(d_pair)
self.proj_pair = nn.Linear(d_pair+36, d_pair)
self.norm_state = nn.LayerNorm(d_state)
self.proj_state = nn.Linear(d_state, d_msa)
self.drop_row = Dropout(broadcast_dim=1, p_drop=p_drop)
self.row_attn = MSARowAttentionWithBias(d_msa=d_msa, d_pair=d_pair,
n_head=n_head, d_hidden=d_hidden)
if use_global_attn:
self.col_attn = MSAColGlobalAttention(d_msa=d_msa, n_head=n_head, d_hidden=d_hidden)
else:
self.col_attn = MSAColAttention(d_msa=d_msa, n_head=n_head, d_hidden=d_hidden)
self.ff = FeedForwardLayer(d_msa, 4, p_drop=p_drop)
# Do proper initialization
self.reset_parameter()
def reset_parameter(self):
# initialize weights to normal distrib
self.proj_pair = init_lecun_normal(self.proj_pair)
self.proj_state = init_lecun_normal(self.proj_state)
# initialize bias to zeros
nn.init.zeros_(self.proj_pair.bias)
nn.init.zeros_(self.proj_state.bias)
def forward(self, msa, pair, rbf_feat, state):
'''
Inputs:
- msa: MSA feature (B, N, L, d_msa)
- pair: Pair feature (B, L, L, d_pair)
- rbf_feat: Ca-Ca distance feature calculated from xyz coordinates (B, L, L, 36)
- xyz: xyz coordinates (B, L, n_atom, 3)
- state: updated node features after SE(3)-Transformer layer (B, L, d_state)
Output:
- msa: Updated MSA feature (B, N, L, d_msa)
'''
B, N, L = msa.shape[:3]
# prepare input bias feature by combining pair & coordinate info
pair = self.norm_pair(pair)
pair = torch.cat((pair, rbf_feat), dim=-1)
pair = self.proj_pair(pair) # (B, L, L, d_pair)
#
# update query sequence feature (first sequence in the MSA) with feedbacks (state) from SE3
state = self.norm_state(state)
state = self.proj_state(state).reshape(B, 1, L, -1)
msa = msa.index_add(1, torch.tensor([0,], device=state.device), state.type(torch.float32))
#
# Apply row/column attention to msa & transform
msa = msa + self.drop_row(self.row_attn(msa, pair))
msa = msa + self.col_attn(msa)
msa = msa + self.ff(msa)
return msa
class PairStr2Pair(nn.Module):
def __init__(self, d_pair=128, n_head=4, d_hidden=32, d_rbf=36, p_drop=0.15):
super(PairStr2Pair, self).__init__()
self.emb_rbf = nn.Linear(d_rbf, d_hidden)
self.proj_rbf = nn.Linear(d_hidden, d_pair)
self.drop_row = Dropout(broadcast_dim=1, p_drop=p_drop)
self.drop_col = Dropout(broadcast_dim=2, p_drop=p_drop)
self.row_attn = BiasedAxialAttention(d_pair, d_pair, n_head, d_hidden, p_drop=p_drop, is_row=True)
self.col_attn = BiasedAxialAttention(d_pair, d_pair, n_head, d_hidden, p_drop=p_drop, is_row=False)
self.ff = FeedForwardLayer(d_pair, 2)
self.reset_parameter()
def reset_parameter(self):
nn.init.kaiming_normal_(self.emb_rbf.weight, nonlinearity='relu')
nn.init.zeros_(self.emb_rbf.bias)
self.proj_rbf = init_lecun_normal(self.proj_rbf)
nn.init.zeros_(self.proj_rbf.bias)
def forward(self, pair, rbf_feat):
B, L = pair.shape[:2]
rbf_feat = self.proj_rbf(F.relu_(self.emb_rbf(rbf_feat)))
pair = pair + self.drop_row(self.row_attn(pair, rbf_feat))
pair = pair + self.drop_col(self.col_attn(pair, rbf_feat))
pair = pair + self.ff(pair)
return pair
class MSA2Pair(nn.Module):
def __init__(self, d_msa=256, d_pair=128, d_hidden=32, p_drop=0.15):
super(MSA2Pair, self).__init__()
self.norm = nn.LayerNorm(d_msa)
self.proj_left = nn.Linear(d_msa, d_hidden)
self.proj_right = nn.Linear(d_msa, d_hidden)
self.proj_out = nn.Linear(d_hidden*d_hidden, d_pair)
self.reset_parameter()
def reset_parameter(self):
# normal initialization
self.proj_left = init_lecun_normal(self.proj_left)
self.proj_right = init_lecun_normal(self.proj_right)
nn.init.zeros_(self.proj_left.bias)
nn.init.zeros_(self.proj_right.bias)
# zero initialize output
nn.init.zeros_(self.proj_out.weight)
nn.init.zeros_(self.proj_out.bias)
def forward(self, msa, pair):
B, N, L = msa.shape[:3]
msa = self.norm(msa)
left = self.proj_left(msa)
right = self.proj_right(msa)
right = right / float(N)
out = einsum('bsli,bsmj->blmij', left, right).reshape(B, L, L, -1)
out = self.proj_out(out)
pair = pair + out
return pair
class SCPred(nn.Module):
def __init__(self, d_msa=256, d_state=32, d_hidden=128, p_drop=0.15):
super(SCPred, self).__init__()
self.norm_s0 = nn.LayerNorm(d_msa)
self.norm_si = nn.LayerNorm(d_state)
self.linear_s0 = nn.Linear(d_msa, d_hidden)
self.linear_si = nn.Linear(d_state, d_hidden)
# ResNet layers
self.linear_1 = nn.Linear(d_hidden, d_hidden)
self.linear_2 = nn.Linear(d_hidden, d_hidden)
self.linear_3 = nn.Linear(d_hidden, d_hidden)
self.linear_4 = nn.Linear(d_hidden, d_hidden)
# Final outputs
self.linear_out = nn.Linear(d_hidden, 20)
self.reset_parameter()
def reset_parameter(self):
# normal initialization
self.linear_s0 = init_lecun_normal(self.linear_s0)
self.linear_si = init_lecun_normal(self.linear_si)
self.linear_out = init_lecun_normal(self.linear_out)
nn.init.zeros_(self.linear_s0.bias)
nn.init.zeros_(self.linear_si.bias)
nn.init.zeros_(self.linear_out.bias)
# right before relu activation: He initializer (kaiming normal)
nn.init.kaiming_normal_(self.linear_1.weight, nonlinearity='relu')
nn.init.zeros_(self.linear_1.bias)
nn.init.kaiming_normal_(self.linear_3.weight, nonlinearity='relu')
nn.init.zeros_(self.linear_3.bias)
# right before residual connection: zero initialize
nn.init.zeros_(self.linear_2.weight)
nn.init.zeros_(self.linear_2.bias)
nn.init.zeros_(self.linear_4.weight)
nn.init.zeros_(self.linear_4.bias)
def forward(self, seq, state):
'''
Predict side-chain torsion angles along with backbone torsions
Inputs:
- seq: hidden embeddings corresponding to query sequence (B, L, d_msa)
- state: state feature (output l0 feature) from previous SE3 layer (B, L, d_state)
Outputs:
- si: predicted torsion angles (phi, psi, omega, chi1~4 with cos/sin, Cb bend, Cb twist, CG) (B, L, 10, 2)
'''
B, L = seq.shape[:2]
seq = self.norm_s0(seq)
state = self.norm_si(state)
si = self.linear_s0(seq) + self.linear_si(state)
si = si + self.linear_2(F.relu_(self.linear_1(F.relu_(si))))
si = si + self.linear_4(F.relu_(self.linear_3(F.relu_(si))))
si = self.linear_out(F.relu_(si))
return si.view(B, L, 10, 2)
class Str2Str(nn.Module):
def __init__(self, d_msa=256, d_pair=128, d_state=16,
SE3_param={'l0_in_features':32, 'l0_out_features':16, 'num_edge_features':32}, p_drop=0.1):
super(Str2Str, self).__init__()
# initial node & pair feature process
self.norm_msa = nn.LayerNorm(d_msa)
self.norm_pair = nn.LayerNorm(d_pair)
self.norm_state = nn.LayerNorm(d_state)
self.embed_x = nn.Linear(d_msa+d_state, SE3_param['l0_in_features'])
self.embed_e1 = nn.Linear(d_pair, SE3_param['num_edge_features'])
self.embed_e2 = nn.Linear(SE3_param['num_edge_features']+36+1, SE3_param['num_edge_features'])
self.norm_node = nn.LayerNorm(SE3_param['l0_in_features'])
self.norm_edge1 = nn.LayerNorm(SE3_param['num_edge_features'])
self.norm_edge2 = nn.LayerNorm(SE3_param['num_edge_features'])
self.se3 = SE3TransformerWrapper(**SE3_param)
self.sc_predictor = SCPred(d_msa=d_msa, d_state=SE3_param['l0_out_features'],
p_drop=p_drop)
self.reset_parameter()
def reset_parameter(self):
# initialize weights to normal distribution
self.embed_x = init_lecun_normal(self.embed_x)
self.embed_e1 = init_lecun_normal(self.embed_e1)
self.embed_e2 = init_lecun_normal(self.embed_e2)
# initialize bias to zeros
nn.init.zeros_(self.embed_x.bias)
nn.init.zeros_(self.embed_e1.bias)
nn.init.zeros_(self.embed_e2.bias)
@torch.cuda.amp.autocast(enabled=False)
def forward(self, msa, pair, R_in, T_in, xyz, state, idx, top_k=64, eps=1e-5):
B, N, L = msa.shape[:3]
state = state.type(torch.float32)
mas = msa.type(torch.float32)
pair = pair.type(torch.float32)
R_in = R_in.type(torch.float32)
T_in = T_in.type(torch.float32)
xyz = xyz.type(torch.float32)
#ic(msa.dtype)
#ic(pair.dtype)
#ic(R_in.dtype)
#ic(T_in.dtype)
#ic(xyz.dtype)
#ic(state.dtype)
#ic(idx.dtype)
# process msa & pair features
node = self.norm_msa(msa[:,0])
pair = self.norm_pair(pair)
state = self.norm_state(state)
node = torch.cat((node, state), dim=-1)
node = self.norm_node(self.embed_x(node))
pair = self.norm_edge1(self.embed_e1(pair))
neighbor = get_seqsep(idx)
rbf_feat = rbf(torch.cdist(xyz[:,:,1], xyz[:,:,1]))
pair = torch.cat((pair, rbf_feat, neighbor), dim=-1)
pair = self.norm_edge2(self.embed_e2(pair))
# define graph
if top_k != 0:
G, edge_feats = make_topk_graph(xyz[:,:,1,:], pair, idx, top_k=top_k)
else:
G, edge_feats = make_full_graph(xyz[:,:,1,:], pair, idx, top_k=top_k)
l1_feats = xyz - xyz[:,:,1,:].unsqueeze(2)
l1_feats = l1_feats.reshape(B*L, -1, 3)
# apply SE(3) Transformer & update coordinates
shift = self.se3(G, node.reshape(B*L, -1, 1), l1_feats, edge_feats)
state = shift['0'].reshape(B, L, -1) # (B, L, C)
offset = shift['1'].reshape(B, L, 2, 3)
delTi = offset[:,:,0,:] / 10.0 # translation
R = offset[:,:,1,:] / 100.0 # rotation
Qnorm = torch.sqrt( 1 + torch.sum(R*R, dim=-1) )
qA, qB, qC, qD = 1/Qnorm, R[:,:,0]/Qnorm, R[:,:,1]/Qnorm, R[:,:,2]/Qnorm
delRi = torch.zeros((B,L,3,3), device=xyz.device)
delRi[:,:,0,0] = qA*qA+qB*qB-qC*qC-qD*qD
delRi[:,:,0,1] = 2*qB*qC - 2*qA*qD
delRi[:,:,0,2] = 2*qB*qD + 2*qA*qC
delRi[:,:,1,0] = 2*qB*qC + 2*qA*qD
delRi[:,:,1,1] = qA*qA-qB*qB+qC*qC-qD*qD
delRi[:,:,1,2] = 2*qC*qD - 2*qA*qB
delRi[:,:,2,0] = 2*qB*qD - 2*qA*qC
delRi[:,:,2,1] = 2*qC*qD + 2*qA*qB
delRi[:,:,2,2] = qA*qA-qB*qB-qC*qC+qD*qD
#
## convert vector to rotation matrix
#R_angle = torch.norm(R, dim=-1, keepdim=True) # (B, L, 1)
#cos_angle = torch.cos(R_angle).unsqueeze(2) # (B, L, 1, 1)
#sin_angle = torch.sin(R_angle).unsqueeze(2) # (B, L, 1, 1)
#R_vector = R / (R_angle+eps) # (B, L, 3)
#delRi = cos_angle*torch.eye(3, device=R.device).reshape(1,1,3,3) \
# + sin_angle*cross_product_matrix(R_vector) \
# + (1.0-cos_angle)*einsum('bni,bnj->bnij', R_vector, R_vector)
Ri = einsum('bnij,bnjk->bnik', delRi, R_in)
Ti = delTi + T_in #einsum('bnij,bnj->bni', delRi, T_in) + delTi
alpha = self.sc_predictor(msa[:,0], state)
return Ri, Ti, state, alpha
class IterBlock(nn.Module):
def __init__(self, d_msa=256, d_pair=128,
n_head_msa=8, n_head_pair=4,
use_global_attn=False,
d_hidden=32, d_hidden_msa=None, p_drop=0.15,
SE3_param={'l0_in_features':32, 'l0_out_features':16, 'num_edge_features':32}):
super(IterBlock, self).__init__()
if d_hidden_msa == None:
d_hidden_msa = d_hidden
self.msa2msa = MSAPairStr2MSA(d_msa=d_msa, d_pair=d_pair,
n_head=n_head_msa,
d_state=SE3_param['l0_out_features'],
use_global_attn=use_global_attn,
d_hidden=d_hidden_msa, p_drop=p_drop)
self.msa2pair = MSA2Pair(d_msa=d_msa, d_pair=d_pair,
d_hidden=d_hidden//2, p_drop=p_drop)
#d_hidden=d_hidden, p_drop=p_drop)
self.pair2pair = PairStr2Pair(d_pair=d_pair, n_head=n_head_pair,
d_hidden=d_hidden, p_drop=p_drop)
self.str2str = Str2Str(d_msa=d_msa, d_pair=d_pair,
d_state=SE3_param['l0_out_features'],
SE3_param=SE3_param,
p_drop=p_drop)
def forward(self, msa, pair, R_in, T_in, xyz, state, idx, use_checkpoint=False):
rbf_feat = rbf(torch.cdist(xyz[:,:,1,:], xyz[:,:,1,:]))
if use_checkpoint:
msa = checkpoint.checkpoint(create_custom_forward(self.msa2msa), msa, pair, rbf_feat, state)
pair = checkpoint.checkpoint(create_custom_forward(self.msa2pair), msa, pair)
pair = checkpoint.checkpoint(create_custom_forward(self.pair2pair), pair, rbf_feat)
R, T, state, alpha = checkpoint.checkpoint(create_custom_forward(self.str2str, top_k=0), msa, pair, R_in, T_in, xyz, state, idx)
else:
msa = self.msa2msa(msa, pair, rbf_feat, state)
pair = self.msa2pair(msa, pair)
pair = self.pair2pair(pair, rbf_feat)
R, T, state, alpha = self.str2str(msa, pair, R_in, T_in, xyz, state, idx, top_k=0)
return msa, pair, R, T, state, alpha
class IterativeSimulator(nn.Module):
def __init__(self, n_extra_block=4, n_main_block=12, n_ref_block=4,
d_msa=256, d_msa_full=64, d_pair=128, d_hidden=32,
n_head_msa=8, n_head_pair=4,
SE3_param_full={'l0_in_features':32, 'l0_out_features':16, 'num_edge_features':32},
SE3_param_topk={'l0_in_features':32, 'l0_out_features':16, 'num_edge_features':32},
p_drop=0.15):
super(IterativeSimulator, self).__init__()
self.n_extra_block = n_extra_block
self.n_main_block = n_main_block
self.n_ref_block = n_ref_block
self.proj_state = nn.Linear(SE3_param_topk['l0_out_features'], SE3_param_full['l0_out_features'])
# Update with extra sequences
if n_extra_block > 0:
self.extra_block = nn.ModuleList([IterBlock(d_msa=d_msa_full, d_pair=d_pair,
n_head_msa=n_head_msa,
n_head_pair=n_head_pair,
d_hidden_msa=8,
d_hidden=d_hidden,
p_drop=p_drop,
use_global_attn=True,
SE3_param=SE3_param_full)
for i in range(n_extra_block)])
# Update with seed sequences
if n_main_block > 0:
self.main_block = nn.ModuleList([IterBlock(d_msa=d_msa, d_pair=d_pair,
n_head_msa=n_head_msa,
n_head_pair=n_head_pair,
d_hidden=d_hidden,
p_drop=p_drop,
use_global_attn=False,
SE3_param=SE3_param_full)
for i in range(n_main_block)])
self.proj_state2 = nn.Linear(SE3_param_full['l0_out_features'], SE3_param_topk['l0_out_features'])
# Final SE(3) refinement
if n_ref_block > 0:
self.str_refiner = Str2Str(d_msa=d_msa, d_pair=d_pair,
d_state=SE3_param_topk['l0_out_features'],
SE3_param=SE3_param_topk,
p_drop=p_drop)
self.reset_parameter()
def reset_parameter(self):
self.proj_state = init_lecun_normal(self.proj_state)
nn.init.zeros_(self.proj_state.bias)
self.proj_state2 = init_lecun_normal(self.proj_state2)
nn.init.zeros_(self.proj_state2.bias)
def forward(self, seq, msa, msa_full, pair, xyz_in, state, idx, use_checkpoint=False):
# input:
# seq: query sequence (B, L)
# msa: seed MSA embeddings (B, N, L, d_msa)
# msa_full: extra MSA embeddings (B, N, L, d_msa_full)
# pair: initial residue pair embeddings (B, L, L, d_pair)
# xyz_in: initial BB coordinates (B, L, n_atom, 3)
# state: initial state features containing mixture of query seq, sidechain, accuracy info (B, L, d_state)
# idx: residue index
B, L = pair.shape[:2]
R_in = torch.eye(3, device=xyz_in.device).reshape(1,1,3,3).expand(B, L, -1, -1)
T_in = xyz_in[:,:,1].clone()
xyz_in = xyz_in - T_in.unsqueeze(-2)
state = self.proj_state(state)
R_s = list()
T_s = list()
alpha_s = list()
for i_m in range(self.n_extra_block):
R_in = R_in.detach() # detach rotation (for stability)
T_in = T_in.detach()
# Get current BB structure
xyz = einsum('bnij,bnaj->bnai', R_in, xyz_in) + T_in.unsqueeze(-2)
msa_full, pair, R_in, T_in, state, alpha = self.extra_block[i_m](msa_full, pair,
R_in, T_in, xyz, state, idx,
use_checkpoint=use_checkpoint)
R_s.append(R_in)
T_s.append(T_in)
alpha_s.append(alpha)
for i_m in range(self.n_main_block):
R_in = R_in.detach()
T_in = T_in.detach()
# Get current BB structure
xyz = einsum('bnij,bnaj->bnai', R_in, xyz_in) + T_in.unsqueeze(-2)
msa, pair, R_in, T_in, state, alpha = self.main_block[i_m](msa, pair,
R_in, T_in, xyz, state, idx,
use_checkpoint=use_checkpoint)
R_s.append(R_in)
T_s.append(T_in)
alpha_s.append(alpha)
state = self.proj_state2(state)
for i_m in range(self.n_ref_block):
R_in = R_in.detach()
T_in = T_in.detach()
xyz = einsum('bnij,bnaj->bnai', R_in, xyz_in) + T_in.unsqueeze(-2)
R_in, T_in, state, alpha = self.str_refiner(msa, pair, R_in, T_in, xyz, state, idx, top_k=64)
R_s.append(R_in)
T_s.append(T_in)
alpha_s.append(alpha)
R_s = torch.stack(R_s, dim=0)
T_s = torch.stack(T_s, dim=0)
alpha_s = torch.stack(alpha_s, dim=0)
return msa, pair, R_s, T_s, alpha_s, state