erichilarysmithsr's picture
Duplicate from merle/PROTEIN_GENERATOR
c145e8a
import numpy as np
import torch
# ============================================================
def get_pair_dist(a, b):
"""calculate pair distances between two sets of points
Parameters
----------
a,b : pytorch tensors of shape [batch,nres,3]
store Cartesian coordinates of two sets of atoms
Returns
-------
dist : pytorch tensor of shape [batch,nres,nres]
stores paitwise distances between atoms in a and b
"""
dist = torch.cdist(a, b, p=2)
return dist
# ============================================================
def get_ang(a, b, c):
"""calculate planar angles for all consecutive triples (a[i],b[i],c[i])
from Cartesian coordinates of three sets of atoms a,b,c
Parameters
----------
a,b,c : pytorch tensors of shape [batch,nres,3]
store Cartesian coordinates of three sets of atoms
Returns
-------
ang : pytorch tensor of shape [batch,nres]
stores resulting planar angles
"""
v = a - b
w = c - b
v = v / torch.norm(v, dim=-1, keepdim=True)
w = w / torch.norm(w, dim=-1, keepdim=True)
# this is not stable at the poles
#vw = torch.sum(v*w, dim=-1)
#ang = torch.acos(vw)
# this is better
# https://math.stackexchange.com/questions/1143354/numerically-stable-method-for-angle-between-3d-vectors/1782769
y = torch.norm(v-w,dim=-1)
x = torch.norm(v+w,dim=-1)
ang = 2*torch.atan2(y, x)
return ang
# ============================================================
def get_dih(a, b, c, d):
"""calculate dihedral angles for all consecutive quadruples (a[i],b[i],c[i],d[i])
given Cartesian coordinates of four sets of atoms a,b,c,d
Parameters
----------
a,b,c,d : pytorch tensors of shape [batch,nres,3]
store Cartesian coordinates of four sets of atoms
Returns
-------
dih : pytorch tensor of shape [batch,nres]
stores resulting dihedrals
"""
b0 = a - b
b1r = c - b
b2 = d - c
b1 = b1r/torch.norm(b1r, dim=-1, keepdim=True)
v = b0 - torch.sum(b0*b1, dim=-1, keepdim=True)*b1
w = b2 - torch.sum(b2*b1, dim=-1, keepdim=True)*b1
x = torch.sum(v*w, dim=-1)
y = torch.sum(torch.cross(b1,v,dim=-1)*w, dim=-1)
ang = torch.atan2(y, x)
return ang
# ============================================================
def xyz_to_c6d(xyz, params):
"""convert cartesian coordinates into 2d distance
and orientation maps
Parameters
----------
xyz : pytorch tensor of shape [batch,3,nres,3]
stores Cartesian coordinates of backbone N,Ca,C atoms
Returns
-------
c6d : pytorch tensor of shape [batch,nres,nres,4]
stores stacked dist,omega,theta,phi 2D maps
"""
batch = xyz.shape[0]
nres = xyz.shape[2]
# three anchor atoms
N = xyz[:,0]
Ca = xyz[:,1]
C = xyz[:,2]
# recreate Cb given N,Ca,C
b = Ca - N
c = C - Ca
a = torch.cross(b, c, dim=-1)
Cb = -0.58273431*a + 0.56802827*b - 0.54067466*c + Ca
# 6d coordinates order: (dist,omega,theta,phi)
c6d = torch.zeros([batch,nres,nres,4],dtype=xyz.dtype,device=xyz.device)
dist = get_pair_dist(Cb,Cb)
dist[torch.isnan(dist)] = 999.9
c6d[...,0] = dist + 999.9*torch.eye(nres,device=xyz.device)[None,...]
b,i,j = torch.where(c6d[...,0]<params['DMAX'])
c6d[b,i,j,torch.full_like(b,1)] = get_dih(Ca[b,i], Cb[b,i], Cb[b,j], Ca[b,j])
c6d[b,i,j,torch.full_like(b,2)] = get_dih(N[b,i], Ca[b,i], Cb[b,i], Cb[b,j])
c6d[b,i,j,torch.full_like(b,3)] = get_ang(Ca[b,i], Cb[b,i], Cb[b,j])
# fix long-range distances
c6d[...,0][c6d[...,0]>=params['DMAX']] = 999.9
return c6d
# ============================================================
def c6d_to_bins(c6d,params):
"""bin 2d distance and orientation maps
"""
dstep = (params['DMAX'] - params['DMIN']) / params['DBINS']
astep = 2.0*np.pi / params['ABINS']
dbins = torch.linspace(params['DMIN']+dstep, params['DMAX'], params['DBINS'],dtype=c6d.dtype,device=c6d.device)
ab360 = torch.linspace(-np.pi+astep, np.pi, params['ABINS'],dtype=c6d.dtype,device=c6d.device)
ab180 = torch.linspace(astep, np.pi, params['ABINS']//2,dtype=c6d.dtype,device=c6d.device)
db = torch.bucketize(c6d[...,0].contiguous(),dbins)
ob = torch.bucketize(c6d[...,1].contiguous(),ab360)
tb = torch.bucketize(c6d[...,2].contiguous(),ab360)
pb = torch.bucketize(c6d[...,3].contiguous(),ab180)
ob[db==params['DBINS']] = params['ABINS']
tb[db==params['DBINS']] = params['ABINS']
pb[db==params['DBINS']] = params['ABINS']//2
return torch.stack([db,ob,tb,pb],axis=-1).to(torch.uint8)
# ============================================================
def dist_to_bins(dist,params):
"""bin 2d distance maps
"""
dstep = (params['DMAX'] - params['DMIN']) / params['DBINS']
db = torch.round((dist-params['DMIN']-dstep/2)/dstep)
db[db<0] = 0
db[db>params['DBINS']] = params['DBINS']
return db.long()
# ============================================================
def c6d_to_bins2(c6d,params):
"""bin 2d distance and orientation maps
(alternative slightly simpler version)
"""
dstep = (params['DMAX'] - params['DMIN']) / params['DBINS']
astep = 2.0*np.pi / params['ABINS']
db = torch.round((c6d[...,0]-params['DMIN']-dstep/2)/dstep)
ob = torch.round((c6d[...,1]+np.pi-astep/2)/astep)
tb = torch.round((c6d[...,2]+np.pi-astep/2)/astep)
pb = torch.round((c6d[...,3]-astep/2)/astep)
# put all d<dmin into one bin
db[db<0] = 0
# synchronize no-contact bins
db[db>params['DBINS']] = params['DBINS']
ob[db==params['DBINS']] = params['ABINS']
tb[db==params['DBINS']] = params['ABINS']
pb[db==params['DBINS']] = params['ABINS']//2
return torch.stack([db,ob,tb,pb],axis=-1).long()
# ============================================================
def get_cb(N,Ca,C):
"""recreate Cb given N,Ca,C"""
b = Ca - N
c = C - Ca
a = torch.cross(b, c, dim=-1)
Cb = -0.58273431*a + 0.56802827*b - 0.54067466*c + Ca
return Cb