makeDEEPROTEIN_GENERATOR / utils /inpainting_util.py
erichilarysmithsr's picture
Duplicate from merle/PROTEIN_GENERATOR
c145e8a
import math
import os
import csv
import random
import torch
from torch.utils import data
import numpy as np
from dateutil import parser
import contigs
from util import *
from kinematics import *
import pandas as pd
import sys
import torch.nn as nn
from icecream import ic
def write_pdb(filename, seq, atoms, Bfacts=None, prefix=None, chains=None):
L = len(seq)
ctr = 1
seq = seq.long()
with open(filename, 'w+') as f:
for i,s in enumerate(seq):
if chains is None:
chain='A'
else:
chain=chains[i]
if (len(atoms.shape)==2):
f.write ("%-6s%5s %4s %3s %s%4d %8.3f%8.3f%8.3f%6.2f%6.2f\n"%(
"ATOM", ctr, " CA ", util.num2aa[s],
chain, i+1, atoms[i,0], atoms[i,1], atoms[i,2],
1.0, Bfacts[i] ) )
ctr += 1
elif atoms.shape[1]==3:
for j,atm_j in enumerate((" N "," CA "," C ")):
f.write ("%-6s%5s %4s %3s %s%4d %8.3f%8.3f%8.3f%6.2f%6.2f\n"%(
"ATOM", ctr, atm_j, num2aa[s],
chain, i+1, atoms[i,j,0], atoms[i,j,1], atoms[i,j,2],
1.0, Bfacts[i] ) )
ctr += 1
else:
atms = aa2long[s]
for j,atm_j in enumerate(atms):
if (atm_j is not None):
f.write ("%-6s%5s %4s %3s %s%4d %8.3f%8.3f%8.3f%6.2f%6.2f\n"%(
"ATOM", ctr, atm_j, num2aa[s],
chain, i+1, atoms[i,j,0], atoms[i,j,1], atoms[i,j,2],
1.0, Bfacts[i] ) )
ctr += 1
def preprocess(xyz_t, t1d, DEVICE, masks_1d, ti_dev=None, ti_flip=None, ang_ref=None):
B, _, L, _, _ = xyz_t.shape
seq_tmp = t1d[...,:-1].argmax(dim=-1).reshape(-1,L).to(DEVICE, non_blocking=True)
alpha, _, alpha_mask,_ = get_torsions(xyz_t.reshape(-1,L,27,3), seq_tmp, ti_dev, ti_flip, ang_ref)
alpha_mask = torch.logical_and(alpha_mask, ~torch.isnan(alpha[...,0]))
alpha[torch.isnan(alpha)] = 0.0
alpha = alpha.reshape(B,-1,L,10,2)
alpha_mask = alpha_mask.reshape(B,-1,L,10,1)
alpha_t = torch.cat((alpha, alpha_mask), dim=-1).reshape(B,-1,L,30)
#t1d = torch.cat((t1d, chis.reshape(B,-1,L,30)), dim=-1)
xyz_t = get_init_xyz(xyz_t)
xyz_prev = xyz_t[:,0]
state = t1d[:,0]
alpha = alpha[:,0]
t2d=xyz_to_t2d(xyz_t)
return (t2d, alpha, alpha_mask, alpha_t, t1d, xyz_t, xyz_prev, state)
def TemplFeaturizeFixbb(seq, conf_1d=None):
"""
Template 1D featurizer for fixed BB examples :
Parameters:
seq (torch.tensor, required): Integer sequence
conf_1d (torch.tensor, optional): Precalcualted confidence tensor
"""
L = seq.shape[-1]
t1d = torch.nn.functional.one_hot(seq, num_classes=21) # one hot sequence
if conf_1d is None:
conf = torch.ones_like(seq)[...,None]
else:
conf = conf_1d[:,None]
t1d = torch.cat((t1d, conf), dim=-1)
return t1d
def MSAFeaturize_fixbb(msa, params):
'''
Input: full msa information
Output: Single sequence, with some percentage of amino acids mutated (but no resides 'masked')
This is modified from autofold2, to remove mutations of the single sequence
'''
N, L = msa.shape
# raw MSA profile
raw_profile = torch.nn.functional.one_hot(msa, num_classes=22)
raw_profile = raw_profile.float().mean(dim=0)
b_seq = list()
b_msa_clust = list()
b_msa_seed = list()
b_msa_extra = list()
b_mask_pos = list()
for i_cycle in range(params['MAXCYCLE']):
assert torch.max(msa) < 22
msa_onehot = torch.nn.functional.one_hot(msa[:1],num_classes=22)
msa_fakeprofile_onehot = torch.nn.functional.one_hot(msa[:1],num_classes=26) #add the extra two indel planes, which will be set to zero
msa_full_onehot = torch.cat((msa_onehot, msa_fakeprofile_onehot), dim=-1)
#make fake msa_extra
msa_extra_onehot = torch.nn.functional.one_hot(msa[:1],num_classes=25)
#make fake msa_clust and mask_pos
msa_clust = msa[:1]
mask_pos = torch.full_like(msa_clust, 1).bool()
b_seq.append(msa[0].clone())
b_msa_seed.append(msa_full_onehot[:1].clone()) #masked single sequence onehot (nb no mask so just single sequence onehot)
b_msa_extra.append(msa_extra_onehot[:1].clone()) #masked single sequence onehot (nb no mask so just single sequence onehot)
b_msa_clust.append(msa_clust[:1].clone()) #unmasked original single sequence
b_mask_pos.append(mask_pos[:1].clone()) #mask positions in single sequence (all zeros)
b_seq = torch.stack(b_seq)
b_msa_clust = torch.stack(b_msa_clust)
b_msa_seed = torch.stack(b_msa_seed)
b_msa_extra = torch.stack(b_msa_extra)
b_mask_pos = torch.stack(b_mask_pos)
return b_seq, b_msa_clust, b_msa_seed, b_msa_extra, b_mask_pos
def MSAFeaturize(msa, params):
'''
Input: full msa information
Output: Single sequence, with some percentage of amino acids mutated (but no resides 'masked')
This is modified from autofold2, to remove mutations of the single sequence
'''
N, L = msa.shape
# raw MSA profile
raw_profile = torch.nn.functional.one_hot(msa, num_classes=22)
raw_profile = raw_profile.float().mean(dim=0)
b_seq = list()
b_msa_clust = list()
b_msa_seed = list()
b_msa_extra = list()
b_mask_pos = list()
for i_cycle in range(params['MAXCYCLE']):
assert torch.max(msa) < 22
msa_onehot = torch.nn.functional.one_hot(msa,num_classes=22)
msa_fakeprofile_onehot = torch.nn.functional.one_hot(msa,num_classes=26) #add the extra two indel planes, which will be set to zero
msa_full_onehot = torch.cat((msa_onehot, msa_fakeprofile_onehot), dim=-1)
#make fake msa_extra
msa_extra_onehot = torch.nn.functional.one_hot(msa,num_classes=25)
#make fake msa_clust and mask_pos
msa_clust = msa
mask_pos = torch.full_like(msa_clust, 1).bool()
b_seq.append(msa[0].clone())
b_msa_seed.append(msa_full_onehot.clone()) #masked single sequence onehot (nb no mask so just single sequence onehot)
b_msa_extra.append(msa_extra_onehot.clone()) #masked single sequence onehot (nb no mask so just single sequence onehot)
b_msa_clust.append(msa_clust.clone()) #unmasked original single sequence
b_mask_pos.append(mask_pos.clone()) #mask positions in single sequence (all zeros)
b_seq = torch.stack(b_seq)
b_msa_clust = torch.stack(b_msa_clust)
b_msa_seed = torch.stack(b_msa_seed)
b_msa_extra = torch.stack(b_msa_extra)
b_mask_pos = torch.stack(b_mask_pos)
return b_seq, b_msa_clust, b_msa_seed, b_msa_extra, b_mask_pos
def mask_inputs(seq, msa_masked, msa_full, xyz_t, t1d, input_seq_mask=None, input_str_mask=None, input_t1dconf_mask=None, loss_seq_mask=None, loss_str_mask=None):
"""
Parameters:
seq (torch.tensor, required): (B,I,L) integer sequence
msa_masked (torch.tensor, required): (B,I,N_short,L,46)
msa_full (torch,.tensor, required): (B,I,N_long,L,23)
xyz_t (torch,tensor): (B,T,L,14,3) template crds BEFORE they go into get_init_xyz
t1d (torch.tensor, required): (B,I,L,22) this is the t1d before tacking on the chi angles
str_mask_1D (torch.tensor, required): Shape (L) rank 1 tensor where structure is masked at False positions
seq_mask_1D (torch.tensor, required): Shape (L) rank 1 tensor where seq is masked at False positions
"""
###########
B,_,_ = seq.shape
assert B == 1, 'batch sizes > 1 not supported'
seq_mask = input_seq_mask[0]
seq[:,:,~seq_mask] = 21 # mask token categorical value
### msa_masked ###
##################
msa_masked[:,:,:,~seq_mask,:20] = 0
msa_masked[:,:,:,~seq_mask,20] = 0
msa_masked[:,:,:,~seq_mask,21] = 1 # set to the unkown char
# index 44/45 is insertion/deletion
# index 43 is the unknown token
# index 42 is the masked token
msa_masked[:,:,:,~seq_mask,22:42] = 0
msa_masked[:,:,:,~seq_mask,43] = 1
msa_masked[:,:,:,~seq_mask,42] = 0
# insertion/deletion stuff
msa_masked[:,:,:,~seq_mask,44:] = 0
### msa_full ###
################
msa_full[:,:,:,~seq_mask,:20] = 0
msa_full[:,:,:,~seq_mask,21] = 1
msa_full[:,:,:,~seq_mask,20] = 0
msa_full[:,:,:,~seq_mask,-1] = 0 #NOTE: double check this is insertions/deletions and 0 makes sense
### t1d ###
###########
# NOTE: Not adjusting t1d last dim (confidence) from sequence mask
t1d[:,:,~seq_mask,:20] = 0
t1d[:,:,~seq_mask,20] = 1 # unknown
t1d[:,:,:,21] *= input_t1dconf_mask
#JG added in here to make sure everything fits
print('expanding t1d to 24 dims')
t1d = torch.cat((t1d, torch.zeros((t1d.shape[0],t1d.shape[1],t1d.shape[2],2)).float()), -1).to(seq.device)
xyz_t[:,:,~seq_mask,3:,:] = float('nan')
# Structure masking
str_mask = input_str_mask[0]
xyz_t[:,:,~str_mask,:,:] = float('nan')
return seq, msa_masked, msa_full, xyz_t, t1d
###########################################################
#Functions for randomly translating/rotation input residues
###########################################################
def get_translated_coords(args):
'''
Parses args.res_translate
'''
#get positions to translate
res_translate = []
for res in args.res_translate.split(":"):
temp_str = []
for i in res.split(','):
temp_str.append(i)
if temp_str[-1][0].isalpha() is True:
temp_str.append(2.0) #set default distance
for i in temp_str[:-1]:
if '-' in i:
start = int(i.split('-')[0][1:])
while start <= int(i.split('-')[1]):
res_translate.append((i.split('-')[0][0] + str(start),float(temp_str[-1])))
start += 1
else:
res_translate.append((i, float(temp_str[-1])))
start = 0
output = []
for i in res_translate:
temp = (i[0], i[1], start)
output.append(temp)
start += 1
return output
def get_tied_translated_coords(args, untied_translate=None):
'''
Parses args.tie_translate
'''
#pdb_idx = list(parsed_pdb['idx'])
#xyz = parsed_pdb['xyz']
#get positions to translate
res_translate = []
block = 0
for res in args.tie_translate.split(":"):
temp_str = []
for i in res.split(','):
temp_str.append(i)
if temp_str[-1][0].isalpha() is True:
temp_str.append(2.0) #set default distance
for i in temp_str[:-1]:
if '-' in i:
start = int(i.split('-')[0][1:])
while start <= int(i.split('-')[1]):
res_translate.append((i.split('-')[0][0] + str(start),float(temp_str[-1]), block))
start += 1
else:
res_translate.append((i, float(temp_str[-1]), block))
block += 1
#sanity check
if untied_translate != None:
checker = [i[0] for i in res_translate]
untied_check = [i[0] for i in untied_translate]
for i in checker:
if i in untied_check:
print(f'WARNING: residue {i} is specified both in --res_translate and --tie_translate. Residue {i} will be ignored in --res_translate, and instead only moved in a tied block (--tie_translate)')
final_output = res_translate
for i in untied_translate:
if i[0] not in checker:
final_output.append((i[0],i[1],i[2] + block + 1))
else:
final_output = res_translate
return final_output
def translate_coords(parsed_pdb, res_translate):
'''
Takes parsed list in format [(chain_residue,distance,tieing_block)] and randomly translates residues accordingly.
'''
pdb_idx = parsed_pdb['pdb_idx']
xyz = np.copy(parsed_pdb['xyz'])
translated_coord_dict = {}
#get number of blocks
temp = [int(i[2]) for i in res_translate]
blocks = np.max(temp)
for block in range(blocks + 1):
init_dist = 1.01
while init_dist > 1: #gives equal probability to any direction (as keeps going until init_dist is within unit circle)
x = random.uniform(-1,1)
y = random.uniform(-1,1)
z = random.uniform(-1,1)
init_dist = np.sqrt(x**2 + y**2 + z**2)
x=x/init_dist
y=y/init_dist
z=z/init_dist
translate_dist = random.uniform(0,1) #now choose distance (as proportion of maximum) that coordinates will be translated
for res in res_translate:
if res[2] == block:
res_idx = pdb_idx.index((res[0][0],int(res[0][1:])))
original_coords = np.copy(xyz[res_idx,:,:])
for i in range(14):
if parsed_pdb['mask'][res_idx, i]:
xyz[res_idx,i,0] += np.float32(x * translate_dist * float(res[1]))
xyz[res_idx,i,1] += np.float32(y * translate_dist * float(res[1]))
xyz[res_idx,i,2] += np.float32(z * translate_dist * float(res[1]))
translated_coords = xyz[res_idx,:,:]
translated_coord_dict[res[0]] = (original_coords.tolist(), translated_coords.tolist())
return xyz[:,:,:], translated_coord_dict
def parse_block_rotate(args):
block_translate = []
block = 0
for res in args.block_rotate.split(":"):
temp_str = []
for i in res.split(','):
temp_str.append(i)
if temp_str[-1][0].isalpha() is True:
temp_str.append(10) #set default angle to 10 degrees
for i in temp_str[:-1]:
if '-' in i:
start = int(i.split('-')[0][1:])
while start <= int(i.split('-')[1]):
block_translate.append((i.split('-')[0][0] + str(start),float(temp_str[-1]), block))
start += 1
else:
block_translate.append((i, float(temp_str[-1]), block))
block += 1
return block_translate
def rotate_block(xyz, block_rotate,pdb_index):
rotated_coord_dict = {}
#get number of blocks
temp = [int(i[2]) for i in block_rotate]
blocks = np.max(temp)
for block in range(blocks + 1):
idxs = [pdb_index.index((i[0][0],int(i[0][1:]))) for i in block_rotate if i[2] == block]
angle = [i[1] for i in block_rotate if i[2] == block][0]
block_xyz = xyz[idxs,:,:]
com = [float(torch.mean(block_xyz[:,:,i])) for i in range(3)]
origin_xyz = np.copy(block_xyz)
for i in range(np.shape(origin_xyz)[0]):
for j in range(14):
origin_xyz[i,j] = origin_xyz[i,j] - com
rotated_xyz = rigid_rotate(origin_xyz,angle,angle,angle)
recovered_xyz = np.copy(rotated_xyz)
for i in range(np.shape(origin_xyz)[0]):
for j in range(14):
recovered_xyz[i,j] = rotated_xyz[i,j] + com
recovered_xyz=torch.tensor(recovered_xyz)
rotated_coord_dict[f'rotated_block_{block}_original'] = block_xyz
rotated_coord_dict[f'rotated_block_{block}_rotated'] = recovered_xyz
xyz_out = torch.clone(xyz)
for i in range(len(idxs)):
xyz_out[idxs[i]] = recovered_xyz[i]
return xyz_out,rotated_coord_dict
def rigid_rotate(xyz,a=180,b=180,c=180):
#TODO fix this to make it truly uniform
a=(a/180)*math.pi
b=(b/180)*math.pi
c=(c/180)*math.pi
alpha = random.uniform(-a, a)
beta = random.uniform(-b, b)
gamma = random.uniform(-c, c)
rotated = []
for i in range(np.shape(xyz)[0]):
for j in range(14):
try:
x = xyz[i,j,0]
y = xyz[i,j,1]
z = xyz[i,j,2]
x2 = x*math.cos(alpha) - y*math.sin(alpha)
y2 = x*math.sin(alpha) + y*math.cos(alpha)
x3 = x2*math.cos(beta) - z*math.sin(beta)
z2 = x2*math.sin(beta) + z*math.cos(beta)
y3 = y2*math.cos(gamma) - z2*math.sin(gamma)
z3 = y2*math.sin(gamma) + z2*math.cos(gamma)
rotated.append([x3,y3,z3])
except:
rotated.append([float('nan'),float('nan'),float('nan')])
rotated=np.array(rotated)
rotated=np.reshape(rotated, [np.shape(xyz)[0],14,3])
return rotated
######## from old pred_util.py
def find_contigs(mask):
"""
Find contiguous regions in a mask that are True with no False in between
Parameters:
mask (torch.tensor or np.array, required): 1D boolean array
Returns:
contigs (list): List of tuples, each tuple containing the beginning and the
"""
assert len(mask.shape) == 1 # 1D tensor of bools
contigs = []
found_contig = False
for i,b in enumerate(mask):
if b and not found_contig: # found the beginning of a contig
contig = [i]
found_contig = True
elif b and found_contig: # currently have contig, continuing it
pass
elif not b and found_contig: # found the end, record previous index as end, reset indicator
contig.append(i)
found_contig = False
contigs.append(tuple(contig))
else: # currently don't have a contig, and didn't find one
pass
# fence post bug - check if the very last entry was True and we didn't get to finish
if b:
contig.append(i+1)
found_contig = False
contigs.append(tuple(contig))
return contigs
def reindex_chains(pdb_idx):
"""
Given a list of (chain, index) tuples, and the indices where chains break, create a reordered indexing
Parameters:
pdb_idx (list, required): List of tuples (chainID, index)
breaks (list, required): List of indices where chains begin
"""
new_breaks, new_idx = [],[]
current_chain = None
chain_and_idx_to_torch = {}
for i,T in enumerate(pdb_idx):
chain, idx = T
if chain != current_chain:
new_breaks.append(i)
current_chain = chain
# create new space for chain id listings
chain_and_idx_to_torch[chain] = {}
# map original pdb (chain, idx) pair to index in tensor
chain_and_idx_to_torch[chain][idx] = i
# append tensor index to list
new_idx.append(i)
new_idx = np.array(new_idx)
# now we have ordered list and know where the chainbreaks are in the new order
num_additions = 0
for i in new_breaks[1:]: # skip the first trivial one
new_idx[np.where(new_idx==(i+ num_additions*500))[0][0]:] += 500
num_additions += 1
return new_idx, chain_and_idx_to_torch,new_breaks[1:]
class ObjectView(object):
'''
Easy wrapper to access dictionary values with "dot" notiation instead
'''
def __init__(self, d):
self.__dict__ = d
def split_templates(xyz_t, t1d, multi_templates,mappings,multi_tmpl_conf=None):
templates = multi_templates.split(":")
if multi_tmpl_conf is not None:
multi_tmpl_conf = [float(i) for i in multi_tmpl_conf.split(",")]
assert len(templates) == len(multi_tmpl_conf), "Number of templates must equal number of confidences specified in --multi_tmpl_conf flag"
for idx, template in enumerate(templates):
parts = template.split(",")
template_mask = torch.zeros(xyz_t.shape[2]).bool()
for part in parts:
start = int(part.split("-")[0][1:])
end = int(part.split("-")[1]) + 1
chain = part[0]
for i in range(start, end):
try:
ref_pos = mappings['complex_con_ref_pdb_idx'].index((chain, i))
hal_pos_0 = mappings['complex_con_hal_idx0'][ref_pos]
except:
ref_pos = mappings['con_ref_pdb_idx'].index((chain, i))
hal_pos_0 = mappings['con_hal_idx0'][ref_pos]
template_mask[hal_pos_0] = True
xyz_t_temp = torch.clone(xyz_t)
xyz_t_temp[:,:,~template_mask,:,:] = float('nan')
t1d_temp = torch.clone(t1d)
t1d_temp[:,:,~template_mask,:20] =0
t1d_temp[:,:,~template_mask,20] = 1
if multi_tmpl_conf is not None:
t1d_temp[:,:,template_mask,21] = multi_tmpl_conf[idx]
if idx != 0:
xyz_t_out = torch.cat((xyz_t_out, xyz_t_temp),dim=1)
t1d_out = torch.cat((t1d_out, t1d_temp),dim=1)
else:
xyz_t_out = xyz_t_temp
t1d_out = t1d_temp
return xyz_t_out, t1d_out
class ContigMap():
'''
New class for doing mapping.
Supports multichain or multiple crops from a single receptor chain.
Also supports indexing jump (+200) or not, based on contig input.
Default chain outputs are inpainted chains as A (and B, C etc if multiple chains), and all fragments of receptor chain on the next one (generally B)
Output chains can be specified. Sequence must be the same number of elements as in contig string
'''
def __init__(self, parsed_pdb, contigs=None, inpaint_seq=None, inpaint_str=None, length=None, ref_idx=None, hal_idx=None, idx_rf=None, inpaint_seq_tensor=None, inpaint_str_tensor=None, topo=False):
#sanity checks
if contigs is None and ref_idx is None:
sys.exit("Must either specify a contig string or precise mapping")
if idx_rf is not None or hal_idx is not None or ref_idx is not None:
if idx_rf is None or hal_idx is None or ref_idx is None:
sys.exit("If you're specifying specific contig mappings, the reference and output positions must be specified, AND the indexing for RoseTTAFold (idx_rf)")
self.chain_order='ABCDEFGHIJKLMNOPQRSTUVWXYZ'
if length is not None:
if '-' not in length:
self.length = [int(length),int(length)+1]
else:
self.length = [int(length.split("-")[0]),int(length.split("-")[1])+1]
else:
self.length = None
self.ref_idx = ref_idx
self.hal_idx=hal_idx
self.idx_rf=idx_rf
self.inpaint_seq = ','.join(inpaint_seq).split(",") if inpaint_seq is not None else None
self.inpaint_str = ','.join(inpaint_str).split(",") if inpaint_str is not None else None
self.inpaint_seq_tensor=inpaint_seq_tensor
self.inpaint_str_tensor=inpaint_str_tensor
self.parsed_pdb = parsed_pdb
self.topo=topo
if ref_idx is None:
#using default contig generation, which outputs in rosetta-like format
self.contigs=contigs
self.sampled_mask,self.contig_length,self.n_inpaint_chains = self.get_sampled_mask()
self.receptor_chain = self.chain_order[self.n_inpaint_chains]
self.receptor, self.receptor_hal, self.receptor_rf, self.inpaint, self.inpaint_hal, self.inpaint_rf= self.expand_sampled_mask()
self.ref = self.inpaint + self.receptor
self.hal = self.inpaint_hal + self.receptor_hal
self.rf = self.inpaint_rf + self.receptor_rf
else:
#specifying precise mappings
self.ref=ref_idx
self.hal=hal_idx
self.rf = rf_idx
self.mask_1d = [False if i == ('_','_') else True for i in self.ref]
#take care of sequence and structure masking
if self.inpaint_seq_tensor is None:
if self.inpaint_seq is not None:
self.inpaint_seq = self.get_inpaint_seq_str(self.inpaint_seq)
else:
self.inpaint_seq = np.array([True if i != ('_','_') else False for i in self.ref])
else:
self.inpaint_seq = self.inpaint_seq_tensor
if self.inpaint_str_tensor is None:
if self.inpaint_str is not None:
self.inpaint_str = self.get_inpaint_seq_str(self.inpaint_str)
else:
self.inpaint_str = np.array([True if i != ('_','_') else False for i in self.ref])
else:
self.inpaint_str = self.inpaint_str_tensor
#get 0-indexed input/output (for trb file)
self.ref_idx0,self.hal_idx0, self.ref_idx0_inpaint, self.hal_idx0_inpaint, self.ref_idx0_receptor, self.hal_idx0_receptor=self.get_idx0()
def get_sampled_mask(self):
'''
Function to get a sampled mask from a contig.
'''
length_compatible=False
count = 0
while length_compatible is False:
inpaint_chains=0
contig_list = self.contigs
sampled_mask = []
sampled_mask_length = 0
#allow receptor chain to be last in contig string
if all([i[0].isalpha() for i in contig_list[-1].split(",")]):
contig_list[-1] = f'{contig_list[-1]},0'
for con in contig_list:
if ((all([i[0].isalpha() for i in con.split(",")[:-1]]) and con.split(",")[-1] == '0')) or self.topo is True:
#receptor chain
sampled_mask.append(con)
else:
inpaint_chains += 1
#chain to be inpainted. These are the only chains that count towards the length of the contig
subcons = con.split(",")
subcon_out = []
for subcon in subcons:
if subcon[0].isalpha():
subcon_out.append(subcon)
if '-' in subcon:
sampled_mask_length += (int(subcon.split("-")[1])-int(subcon.split("-")[0][1:])+1)
else:
sampled_mask_length += 1
else:
if '-' in subcon:
length_inpaint=random.randint(int(subcon.split("-")[0]),int(subcon.split("-")[1]))
subcon_out.append(f'{length_inpaint}-{length_inpaint}')
sampled_mask_length += length_inpaint
elif subcon == '0':
subcon_out.append('0')
else:
length_inpaint=int(subcon)
subcon_out.append(f'{length_inpaint}-{length_inpaint}')
sampled_mask_length += int(subcon)
sampled_mask.append(','.join(subcon_out))
#check length is compatible
if self.length is not None:
if sampled_mask_length >= self.length[0] and sampled_mask_length < self.length[1]:
length_compatible = True
else:
length_compatible = True
count+=1
if count == 100000: #contig string incompatible with this length
sys.exit("Contig string incompatible with --length range")
return sampled_mask, sampled_mask_length, inpaint_chains
def expand_sampled_mask(self):
chain_order='ABCDEFGHIJKLMNOPQRSTUVWXYZ'
receptor = []
inpaint = []
receptor_hal = []
inpaint_hal = []
receptor_idx = 1
inpaint_idx = 1
inpaint_chain_idx=-1
receptor_chain_break=[]
inpaint_chain_break = []
for con in self.sampled_mask:
if (all([i[0].isalpha() for i in con.split(",")[:-1]]) and con.split(",")[-1] == '0') or self.topo is True:
#receptor chain
subcons = con.split(",")[:-1]
assert all([i[0] == subcons[0][0] for i in subcons]), "If specifying fragmented receptor in a single block of the contig string, they MUST derive from the same chain"
assert all(int(subcons[i].split("-")[0][1:]) < int(subcons[i+1].split("-")[0][1:]) for i in range(len(subcons)-1)), "If specifying multiple fragments from the same chain, pdb indices must be in ascending order!"
for idx, subcon in enumerate(subcons):
ref_to_add = [(subcon[0], i) for i in np.arange(int(subcon.split("-")[0][1:]),int(subcon.split("-")[1])+1)]
receptor.extend(ref_to_add)
receptor_hal.extend([(self.receptor_chain,i) for i in np.arange(receptor_idx, receptor_idx+len(ref_to_add))])
receptor_idx += len(ref_to_add)
if idx != len(subcons)-1:
idx_jump = int(subcons[idx+1].split("-")[0][1:]) - int(subcon.split("-")[1]) -1
receptor_chain_break.append((receptor_idx-1,idx_jump)) #actual chain break in pdb chain
else:
receptor_chain_break.append((receptor_idx-1,200)) #200 aa chain break
else:
inpaint_chain_idx += 1
for subcon in con.split(","):
if subcon[0].isalpha():
ref_to_add=[(subcon[0], i) for i in np.arange(int(subcon.split("-")[0][1:]),int(subcon.split("-")[1])+1)]
inpaint.extend(ref_to_add)
inpaint_hal.extend([(chain_order[inpaint_chain_idx], i) for i in np.arange(inpaint_idx,inpaint_idx+len(ref_to_add))])
inpaint_idx += len(ref_to_add)
else:
inpaint.extend([('_','_')] * int(subcon.split("-")[0]))
inpaint_hal.extend([(chain_order[inpaint_chain_idx], i) for i in np.arange(inpaint_idx,inpaint_idx+int(subcon.split("-")[0]))])
inpaint_idx += int(subcon.split("-")[0])
inpaint_chain_break.append((inpaint_idx-1,200))
if self.topo is True or inpaint_hal == []:
receptor_hal = [(i[0], i[1]) for i in receptor_hal]
else:
receptor_hal = [(i[0], i[1] + inpaint_hal[-1][1]) for i in receptor_hal] #rosetta-like numbering
#get rf indexes, with chain breaks
inpaint_rf = np.arange(0,len(inpaint))
receptor_rf = np.arange(len(inpaint)+200,len(inpaint)+len(receptor)+200)
for ch_break in inpaint_chain_break[:-1]:
receptor_rf[:] += 200
inpaint_rf[ch_break[0]:] += ch_break[1]
for ch_break in receptor_chain_break[:-1]:
receptor_rf[ch_break[0]:] += ch_break[1]
return receptor, receptor_hal, receptor_rf.tolist(), inpaint, inpaint_hal, inpaint_rf.tolist()
def get_inpaint_seq_str(self, inpaint_s):
'''
function to generate inpaint_str or inpaint_seq masks specific to this contig
'''
s_mask = np.copy(self.mask_1d)
inpaint_s_list = []
for i in inpaint_s:
if '-' in i:
inpaint_s_list.extend([(i[0],p) for p in range(int(i.split("-")[0][1:]), int(i.split("-")[1])+1)])
else:
inpaint_s_list.append((i[0],int(i[1:])))
for res in inpaint_s_list:
if res in self.ref:
s_mask[self.ref.index(res)] = False #mask this residue
return np.array(s_mask)
def get_idx0(self):
ref_idx0=[]
hal_idx0=[]
ref_idx0_inpaint=[]
hal_idx0_inpaint=[]
ref_idx0_receptor=[]
hal_idx0_receptor=[]
for idx, val in enumerate(self.ref):
if val != ('_','_'):
assert val in self.parsed_pdb['pdb_idx'],f"{val} is not in pdb file!"
hal_idx0.append(idx)
ref_idx0.append(self.parsed_pdb['pdb_idx'].index(val))
for idx, val in enumerate(self.inpaint):
if val != ('_','_'):
hal_idx0_inpaint.append(idx)
ref_idx0_inpaint.append(self.parsed_pdb['pdb_idx'].index(val))
for idx, val in enumerate(self.receptor):
if val != ('_','_'):
hal_idx0_receptor.append(idx)
ref_idx0_receptor.append(self.parsed_pdb['pdb_idx'].index(val))
return ref_idx0, hal_idx0, ref_idx0_inpaint, hal_idx0_inpaint, ref_idx0_receptor, hal_idx0_receptor
def get_mappings(rm):
mappings = {}
mappings['con_ref_pdb_idx'] = [i for i in rm.inpaint if i != ('_','_')]
mappings['con_hal_pdb_idx'] = [rm.inpaint_hal[i] for i in range(len(rm.inpaint_hal)) if rm.inpaint[i] != ("_","_")]
mappings['con_ref_idx0'] = rm.ref_idx0_inpaint
mappings['con_hal_idx0'] = rm.hal_idx0_inpaint
if rm.inpaint != rm.ref:
mappings['complex_con_ref_pdb_idx'] = [i for i in rm.ref if i != ("_","_")]
mappings['complex_con_hal_pdb_idx'] = [rm.hal[i] for i in range(len(rm.hal)) if rm.ref[i] != ("_","_")]
mappings['receptor_con_ref_pdb_idx'] = [i for i in rm.receptor if i != ("_","_")]
mappings['receptor_con_hal_pdb_idx'] = [rm.receptor_hal[i] for i in range(len(rm.receptor_hal)) if rm.receptor[i] != ("_","_")]
mappings['complex_con_ref_idx0'] = rm.ref_idx0
mappings['complex_con_hal_idx0'] = rm.hal_idx0
mappings['receptor_con_ref_idx0'] = rm.ref_idx0_receptor
mappings['receptor_con_hal_idx0'] = rm.hal_idx0_receptor
mappings['inpaint_str'] = rm.inpaint_str
mappings['inpaint_seq'] = rm.inpaint_seq
mappings['sampled_mask'] = rm.sampled_mask
mappings['mask_1d'] = rm.mask_1d
return mappings
def lddt_unbin(pred_lddt):
nbin = pred_lddt.shape[1]
bin_step = 1.0 / nbin
lddt_bins = torch.linspace(bin_step, 1.0, nbin, dtype=pred_lddt.dtype, device=pred_lddt.device)
pred_lddt = nn.Softmax(dim=1)(pred_lddt)
return torch.sum(lddt_bins[None,:,None]*pred_lddt, dim=1)