Spaces:
Build error
Build error
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# | |
# Permission is hereby granted, free of charge, to any person obtaining a | |
# copy of this software and associated documentation files (the "Software"), | |
# to deal in the Software without restriction, including without limitation | |
# the rights to use, copy, modify, merge, publish, distribute, sublicense, | |
# and/or sell copies of the Software, and to permit persons to whom the | |
# Software is furnished to do so, subject to the following conditions: | |
# | |
# The above copyright notice and this permission notice shall be included in | |
# all copies or substantial portions of the Software. | |
# | |
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | |
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING | |
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER | |
# DEALINGS IN THE SOFTWARE. | |
# | |
# SPDX-FileCopyrightText: Copyright (c) 2021 NVIDIA CORPORATION & AFFILIATES | |
# SPDX-License-Identifier: MIT | |
from typing import List | |
import torch | |
import torch.nn as nn | |
from torch.nn.parallel import DistributedDataParallel | |
from torch.utils.data import DataLoader | |
from tqdm import tqdm | |
from se3_transformer.runtime import gpu_affinity | |
from se3_transformer.runtime.arguments import PARSER | |
from se3_transformer.runtime.callbacks import BaseCallback | |
from se3_transformer.runtime.loggers import DLLogger | |
from se3_transformer.runtime.utils import to_cuda, get_local_rank | |
def evaluate(model: nn.Module, | |
dataloader: DataLoader, | |
callbacks: List[BaseCallback], | |
args): | |
model.eval() | |
for i, batch in tqdm(enumerate(dataloader), total=len(dataloader), unit='batch', desc=f'Evaluation', | |
leave=False, disable=(args.silent or get_local_rank() != 0)): | |
*input, target = to_cuda(batch) | |
for callback in callbacks: | |
callback.on_batch_start() | |
with torch.cuda.amp.autocast(enabled=args.amp): | |
pred = model(*input) | |
for callback in callbacks: | |
callback.on_validation_step(input, target, pred) | |
if __name__ == '__main__': | |
from se3_transformer.runtime.callbacks import QM9MetricCallback, PerformanceCallback | |
from se3_transformer.runtime.utils import init_distributed, seed_everything | |
from se3_transformer.model import SE3TransformerPooled, Fiber | |
from se3_transformer.data_loading import QM9DataModule | |
import torch.distributed as dist | |
import logging | |
import sys | |
is_distributed = init_distributed() | |
local_rank = get_local_rank() | |
args = PARSER.parse_args() | |
logging.getLogger().setLevel(logging.CRITICAL if local_rank != 0 or args.silent else logging.INFO) | |
logging.info('====== SE(3)-Transformer ======') | |
logging.info('| Inference on the test set |') | |
logging.info('===============================') | |
if not args.benchmark and args.load_ckpt_path is None: | |
logging.error('No load_ckpt_path provided, you need to provide a saved model to evaluate') | |
sys.exit(1) | |
if args.benchmark: | |
logging.info('Running benchmark mode with one warmup pass') | |
if args.seed is not None: | |
seed_everything(args.seed) | |
major_cc, minor_cc = torch.cuda.get_device_capability() | |
logger = DLLogger(args.log_dir, filename=args.dllogger_name) | |
datamodule = QM9DataModule(**vars(args)) | |
model = SE3TransformerPooled( | |
fiber_in=Fiber({0: datamodule.NODE_FEATURE_DIM}), | |
fiber_out=Fiber({0: args.num_degrees * args.num_channels}), | |
fiber_edge=Fiber({0: datamodule.EDGE_FEATURE_DIM}), | |
output_dim=1, | |
tensor_cores=(args.amp and major_cc >= 7) or major_cc >= 8, # use Tensor Cores more effectively | |
**vars(args) | |
) | |
callbacks = [QM9MetricCallback(logger, targets_std=datamodule.targets_std, prefix='test')] | |
model.to(device=torch.cuda.current_device()) | |
if args.load_ckpt_path is not None: | |
checkpoint = torch.load(str(args.load_ckpt_path), map_location={'cuda:0': f'cuda:{local_rank}'}) | |
model.load_state_dict(checkpoint['state_dict']) | |
if is_distributed: | |
nproc_per_node = torch.cuda.device_count() | |
affinity = gpu_affinity.set_affinity(local_rank, nproc_per_node) | |
model = DistributedDataParallel(model, device_ids=[local_rank], output_device=local_rank) | |
test_dataloader = datamodule.test_dataloader() if not args.benchmark else datamodule.train_dataloader() | |
evaluate(model, | |
test_dataloader, | |
callbacks, | |
args) | |
for callback in callbacks: | |
callback.on_validation_end() | |
if args.benchmark: | |
world_size = dist.get_world_size() if dist.is_initialized() else 1 | |
callbacks = [PerformanceCallback(logger, args.batch_size * world_size, warmup_epochs=1, mode='inference')] | |
for _ in range(6): | |
evaluate(model, | |
test_dataloader, | |
callbacks, | |
args) | |
callbacks[0].on_epoch_end() | |
callbacks[0].on_fit_end() | |