# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. # # SPDX-FileCopyrightText: Copyright (c) 2021 NVIDIA CORPORATION & AFFILIATES # SPDX-License-Identifier: MIT from typing import Tuple import dgl import pathlib import torch from dgl.data import QM9EdgeDataset from dgl import DGLGraph from torch import Tensor from torch.utils.data import random_split, DataLoader, Dataset from tqdm import tqdm from se3_transformer.data_loading.data_module import DataModule from se3_transformer.model.basis import get_basis from se3_transformer.runtime.utils import get_local_rank, str2bool, using_tensor_cores def _get_relative_pos(qm9_graph: DGLGraph) -> Tensor: x = qm9_graph.ndata['pos'] src, dst = qm9_graph.edges() rel_pos = x[dst] - x[src] return rel_pos def _get_split_sizes(full_dataset: Dataset) -> Tuple[int, int, int]: len_full = len(full_dataset) len_train = 100_000 len_test = int(0.1 * len_full) len_val = len_full - len_train - len_test return len_train, len_val, len_test class QM9DataModule(DataModule): """ Datamodule wrapping https://docs.dgl.ai/en/latest/api/python/dgl.data.html#qm9edge-dataset Training set is 100k molecules. Test set is 10% of the dataset. Validation set is the rest. This includes all the molecules from QM9 except the ones that are uncharacterized. """ NODE_FEATURE_DIM = 6 EDGE_FEATURE_DIM = 4 def __init__(self, data_dir: pathlib.Path, task: str = 'homo', batch_size: int = 240, num_workers: int = 8, num_degrees: int = 4, amp: bool = False, precompute_bases: bool = False, **kwargs): self.data_dir = data_dir # This needs to be before __init__ so that prepare_data has access to it super().__init__(batch_size=batch_size, num_workers=num_workers, collate_fn=self._collate) self.amp = amp self.task = task self.batch_size = batch_size self.num_degrees = num_degrees qm9_kwargs = dict(label_keys=[self.task], verbose=False, raw_dir=str(data_dir)) if precompute_bases: bases_kwargs = dict(max_degree=num_degrees - 1, use_pad_trick=using_tensor_cores(amp), amp=amp) full_dataset = CachedBasesQM9EdgeDataset(bases_kwargs=bases_kwargs, batch_size=batch_size, **qm9_kwargs) else: full_dataset = QM9EdgeDataset(**qm9_kwargs) self.ds_train, self.ds_val, self.ds_test = random_split(full_dataset, _get_split_sizes(full_dataset), generator=torch.Generator().manual_seed(0)) train_targets = full_dataset.targets[self.ds_train.indices, full_dataset.label_keys[0]] self.targets_mean = train_targets.mean() self.targets_std = train_targets.std() def prepare_data(self): # Download the QM9 preprocessed data QM9EdgeDataset(verbose=True, raw_dir=str(self.data_dir)) def _collate(self, samples): graphs, y, *bases = map(list, zip(*samples)) batched_graph = dgl.batch(graphs) edge_feats = {'0': batched_graph.edata['edge_attr'][..., None]} batched_graph.edata['rel_pos'] = _get_relative_pos(batched_graph) # get node features node_feats = {'0': batched_graph.ndata['attr'][:, :6, None]} targets = (torch.cat(y) - self.targets_mean) / self.targets_std if bases: # collate bases all_bases = { key: torch.cat([b[key] for b in bases[0]], dim=0) for key in bases[0][0].keys() } return batched_graph, node_feats, edge_feats, all_bases, targets else: return batched_graph, node_feats, edge_feats, targets @staticmethod def add_argparse_args(parent_parser): parser = parent_parser.add_argument_group("QM9 dataset") parser.add_argument('--task', type=str, default='homo', const='homo', nargs='?', choices=['mu', 'alpha', 'homo', 'lumo', 'gap', 'r2', 'zpve', 'U0', 'U', 'H', 'G', 'Cv', 'U0_atom', 'U_atom', 'H_atom', 'G_atom', 'A', 'B', 'C'], help='Regression task to train on') parser.add_argument('--precompute_bases', type=str2bool, nargs='?', const=True, default=False, help='Precompute bases at the beginning of the script during dataset initialization,' ' instead of computing them at the beginning of each forward pass.') return parent_parser def __repr__(self): return f'QM9({self.task})' class CachedBasesQM9EdgeDataset(QM9EdgeDataset): """ Dataset extending the QM9 dataset from DGL with precomputed (cached in RAM) pairwise bases """ def __init__(self, bases_kwargs: dict, batch_size: int, *args, **kwargs): """ :param bases_kwargs: Arguments to feed the bases computation function :param batch_size: Batch size to use when iterating over the dataset for computing bases """ self.bases_kwargs = bases_kwargs self.batch_size = batch_size self.bases = None super().__init__(*args, **kwargs) def load(self): super().load() # Iterate through the dataset and compute bases (pairwise only) # Potential improvement: use multi-GPU and reduction dataloader = DataLoader(self, shuffle=False, batch_size=self.batch_size, collate_fn=lambda samples: dgl.batch([sample[0] for sample in samples])) bases = [] for i, graph in tqdm(enumerate(dataloader), total=len(dataloader), desc='Precomputing QM9 bases', disable=get_local_rank() != 0): rel_pos = _get_relative_pos(graph) # Compute the bases with the GPU but convert the result to CPU to store in RAM bases.append({k: v.cpu() for k, v in get_basis(rel_pos.cuda(), **self.bases_kwargs).items()}) self.bases = bases # Assign at the end so that __getitem__ isn't confused def __getitem__(self, idx: int): graph, label = super().__getitem__(idx) if self.bases: bases_idx = idx // self.batch_size bases_cumsum_idx = self.ne_cumsum[idx] - self.ne_cumsum[bases_idx * self.batch_size] bases_cumsum_next_idx = self.ne_cumsum[idx + 1] - self.ne_cumsum[bases_idx * self.batch_size] return graph, label, {key: basis[bases_cumsum_idx:bases_cumsum_next_idx] for key, basis in self.bases[bases_idx].items()} else: return graph, label