# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. # # SPDX-FileCopyrightText: Copyright (c) 2021 NVIDIA CORPORATION & AFFILIATES # SPDX-License-Identifier: MIT import logging import time from abc import ABC, abstractmethod from typing import Optional import numpy as np import torch from se3_transformer.runtime.loggers import Logger from se3_transformer.runtime.metrics import MeanAbsoluteError class BaseCallback(ABC): def on_fit_start(self, optimizer, args): pass def on_fit_end(self): pass def on_epoch_end(self): pass def on_batch_start(self): pass def on_validation_step(self, input, target, pred): pass def on_validation_end(self, epoch=None): pass def on_checkpoint_load(self, checkpoint): pass def on_checkpoint_save(self, checkpoint): pass class LRSchedulerCallback(BaseCallback): def __init__(self, logger: Optional[Logger] = None): self.logger = logger self.scheduler = None @abstractmethod def get_scheduler(self, optimizer, args): pass def on_fit_start(self, optimizer, args): self.scheduler = self.get_scheduler(optimizer, args) def on_checkpoint_load(self, checkpoint): self.scheduler.load_state_dict(checkpoint['scheduler_state_dict']) def on_checkpoint_save(self, checkpoint): checkpoint['scheduler_state_dict'] = self.scheduler.state_dict() def on_epoch_end(self): if self.logger is not None: self.logger.log_metrics({'learning rate': self.scheduler.get_last_lr()[0]}, step=self.scheduler.last_epoch) self.scheduler.step() class QM9MetricCallback(BaseCallback): """ Logs the rescaled mean absolute error for QM9 regression tasks """ def __init__(self, logger, targets_std, prefix=''): self.mae = MeanAbsoluteError() self.logger = logger self.targets_std = targets_std self.prefix = prefix self.best_mae = float('inf') def on_validation_step(self, input, target, pred): self.mae(pred.detach(), target.detach()) def on_validation_end(self, epoch=None): mae = self.mae.compute() * self.targets_std logging.info(f'{self.prefix} MAE: {mae}') self.logger.log_metrics({f'{self.prefix} MAE': mae}, epoch) self.best_mae = min(self.best_mae, mae) def on_fit_end(self): if self.best_mae != float('inf'): self.logger.log_metrics({f'{self.prefix} best MAE': self.best_mae}) class QM9LRSchedulerCallback(LRSchedulerCallback): def __init__(self, logger, epochs): super().__init__(logger) self.epochs = epochs def get_scheduler(self, optimizer, args): min_lr = args.min_learning_rate if args.min_learning_rate else args.learning_rate / 10.0 return torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, self.epochs, eta_min=min_lr) class PerformanceCallback(BaseCallback): def __init__(self, logger, batch_size: int, warmup_epochs: int = 1, mode: str = 'train'): self.batch_size = batch_size self.warmup_epochs = warmup_epochs self.epoch = 0 self.timestamps = [] self.mode = mode self.logger = logger def on_batch_start(self): if self.epoch >= self.warmup_epochs: self.timestamps.append(time.time() * 1000.0) def _log_perf(self): stats = self.process_performance_stats() for k, v in stats.items(): logging.info(f'performance {k}: {v}') self.logger.log_metrics(stats) def on_epoch_end(self): self.epoch += 1 def on_fit_end(self): if self.epoch > self.warmup_epochs: self._log_perf() self.timestamps = [] def process_performance_stats(self): timestamps = np.asarray(self.timestamps) deltas = np.diff(timestamps) throughput = (self.batch_size / deltas).mean() stats = { f"throughput_{self.mode}": throughput, f"latency_{self.mode}_mean": deltas.mean(), f"total_time_{self.mode}": timestamps[-1] - timestamps[0], } for level in [90, 95, 99]: stats.update({f"latency_{self.mode}_{level}": np.percentile(deltas, level)}) return stats