File size: 4,847 Bytes
39899ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import gradio as gr
import openai
import examples as chatbot_examples

# Define a function to get the AI's reply using the OpenAI API
def get_ai_reply(model, system_message, message, history_state):
    # Initialize the messages list with the system message
    messages = [{"role": "system", "content": system_message}]
    
    # Add the conversation history to the messages list
    messages += history_state
    
    # Add the user's message to the messages list
    messages += [{"role": "user", "content": message}]
    
    # Make an API call to the OpenAI ChatCompletion endpoint with the model and messages
    completion = openai.ChatCompletion.create(
        model=model,
        messages=messages
    )
    
    # Extract and return the AI's response from the API response
    return completion.choices[0].message.content

# Define a function to handle the chat interaction with the AI model
def chat(model, system_message, message, chatbot_messages, history_state):
    # Initialize chatbot_messages and history_state if they are not provided
    chatbot_messages = chatbot_messages or []
    history_state = history_state or []
    
    # Try to get the AI's reply using the get_ai_reply function
    try:
        ai_reply = get_ai_reply(model, system_message, message, history_state)
    except:
        # If an error occurs, return None and the current chatbot_messages and history_state
        return None, chatbot_messages, history_state
    
    # Append the user's message and the AI's reply to the chatbot_messages list
    chatbot_messages.append((message, ai_reply))
    
    # Append the user's message and the AI's reply to the history_state list
    history_state.append({"role": "user", "content": message})
    history_state.append({"role": "assistant", "content": ai_reply})
    
    # Return None (empty out the user's message textbox), the updated chatbot_messages, and the updated history_state
    return None, chatbot_messages, history_state

# Define a function to launch the chatbot interface using Gradio
def launch_chatbot(additional_examples=[], share=False):
    # Load chatbot examples and merge with any additional examples provided
    examples = chatbot_examples.load_examples(additional=additional_examples)
    
    # Define a function to get the names of the examples
    def get_examples():
        return [example["name"] for example in examples]

    # Define a function to choose an example based on the index
    def choose_example(index):
        system_message = examples[index]["system_message"].strip()
        user_message = examples[index]["message"].strip()
        return system_message, user_message, [], []

    # Create the Gradio interface using the Blocks layout
    with gr.Blocks() as demo:
        with gr.Tab("Conversation"):
            with gr.Row():
                with gr.Column():
                    # Create a dropdown to select examples
                    example_dropdown = gr.Dropdown(get_examples(), label="Examples", type="index")
                    # Create a button to load the selected example
                    example_load_btn = gr.Button(value="Load")
                    # Create a textbox for the system message (prompt)
                    system_message = gr.Textbox(label="System Message (Prompt)", value="You are a helpful assistant.")
                with gr.Column():
                    # Create a dropdown to select the AI model
                    model_selector = gr.Dropdown(
                        ["gpt-3.5-turbo", "gpt-4"],
                        label="Model",
                        value="gpt-3.5-turbo"
                    )
                    # Create a chatbot interface for the conversation
                    chatbot = gr.Chatbot(label="Conversation")
                    # Create a textbox for the user's message
                    message = gr.Textbox(label="Message")
                    # Create a state object to store the conversation history
                    history_state = gr.State()
                    # Create a button to send the user's message
                    btn = gr.Button(value="Send")

                # Connect the example load button to the choose_example function
                example_load_btn.click(choose_example, inputs=[example_dropdown], outputs=[system_message, message, chatbot, history_state])
                # Connect the send button to the chat function
                btn.click(chat, inputs=[model_selector, system_message, message, chatbot, history_state], outputs=[message, chatbot, history_state])
        # Launch the Gradio interface
        demo.launch(share=share)
        
# Call the launch_chatbot function to start the chatbot interface using Gradio
# Set the share parameter to False, meaning the interface will not be publicly accessible
launch_chatbot(share=False)