import gradio as gr import openai import examples as chatbot_examples from dotenv import load_dotenv import os load_dotenv() # take environment variables from .env. # In order to authenticate, secrets must have been set, and the user supplied credentials match def auth(username, password): app_username = os.getenv("APP_USERNAME") app_password = os.getenv("APP_PASSWORD") if app_username and app_password: if(username == app_username and password == app_password): print("Logged in successfully.") return True else: print("Username or password does not match.") else: print("Credential secrets not set.") return False # Define a function to get the AI's reply using the OpenAI API def get_ai_reply(message, model="gpt-3.5-turbo", system_message=None, temperature=0, message_history=[]): # Initialize the messages list messages = [] # Add the system message to the messages list if system_message is not None: messages += [{"role": "system", "content": system_message}] # Add the message history to the messages list if message_history is not None: messages += message_history # Add the user's message to the messages list messages += [{"role": "user", "content": message}] # Make an API call to the OpenAI ChatCompletion endpoint with the model and messages completion = openai.ChatCompletion.create( model=model, messages=messages, temperature=temperature ) # Extract and return the AI's response from the API response return completion.choices[0].message.content.strip() # Define a function to handle the chat interaction with the AI model def chat(model, system_message, message, chatbot_messages, history_state): # Initialize chatbot_messages and history_state if they are not provided chatbot_messages = chatbot_messages or [] history_state = history_state or [] # Try to get the AI's reply using the get_ai_reply function try: ai_reply = get_ai_reply(message, model=model, system_message=system_message, message_history=history_state) # Append the user's message and the AI's reply to the chatbot_messages list chatbot_messages.append((message, ai_reply)) # Append the user's message and the AI's reply to the history_state list history_state.append({"role": "user", "content": message}) history_state.append({"role": "assistant", "content": ai_reply}) # Return None (empty out the user's message textbox), the updated chatbot_messages, and the updated history_state except Exception as e: # If an error occurs, raise a Gradio error raise gr.Error(e) return None, chatbot_messages, history_state # Define a function to launch the chatbot interface using Gradio def get_chatbot_app(additional_examples=[]): # Load chatbot examples and merge with any additional examples provided examples = chatbot_examples.load_examples(additional=additional_examples) # Define a function to get the names of the examples def get_examples(): return [example["name"] for example in examples] # Define a function to choose an example based on the index def choose_example(index): if(index!=None): system_message = examples[index]["system_message"].strip() user_message = examples[index]["message"].strip() return system_message, user_message, [], [] else: return "", "", [], [] # Create the Gradio interface using the Blocks layout with gr.Blocks() as app: with gr.Tab("Conversation"): with gr.Row(): with gr.Column(): # Create a dropdown to select examples example_dropdown = gr.Dropdown(get_examples(), label="Examples", type="index") # Create a button to load the selected example example_load_btn = gr.Button(value="Load") # Create a textbox for the system message (prompt) system_message = gr.Textbox(label="System Message (Prompt)", value="You are a helpful assistant.") with gr.Column(): # Create a dropdown to select the AI model model_selector = gr.Dropdown( ["gpt-3.5-turbo"], label="Model", value="gpt-3.5-turbo" ) # Create a chatbot interface for the conversation chatbot = gr.Chatbot(label="Conversation") # Create a textbox for the user's message message = gr.Textbox(label="Message") # Create a state object to store the conversation history history_state = gr.State() # Create a button to send the user's message btn = gr.Button(value="Send") # Connect the example load button to the choose_example function example_load_btn.click(choose_example, inputs=[example_dropdown], outputs=[system_message, message, chatbot, history_state]) # Connect the send button to the chat function btn.click(chat, inputs=[model_selector, system_message, message, chatbot, history_state], outputs=[message, chatbot, history_state]) # Return the app return app # Call the launch_chatbot function to start the chatbot interface using Gradio # Set the share parameter to False, meaning the interface will not be publicly accessible app = get_chatbot_app() app.queue() # this is to be able to queue multiple requests at once app.launch(auth=auth)