Spaces:
Runtime error
Runtime error
File size: 8,959 Bytes
6e8003f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
import httpx
import os
import requests
import gradio as gr
import openai
from fastapi import Depends, FastAPI, Request
from app.db import User, create_db_and_tables
from app.schemas import UserCreate, UserRead, UserUpdate
from app.users import auth_backend, current_active_user, fastapi_users
from dotenv import load_dotenv
import examples as chatbot_examples
# Get the current environment from the environment variable
current_environment = os.getenv("APP_ENV", "dev")
# Load the appropriate .env file based on the current environment
if current_environment == "dev":
load_dotenv(".env.dev")
elif current_environment == "test":
load_dotenv(".env.test")
elif current_environment == "prod":
load_dotenv(".env.prod")
else:
raise ValueError("Invalid environment specified")
def api_login(email, password):
port = os.getenv("APP_PORT")
scheme = os.getenv("APP_SCHEME")
host = os.getenv("APP_HOST")
url = f"{scheme}://{host}:{port}/auth/jwt/login"
payload = {
'username': email,
'password': password
}
headers = {
'Content-Type': 'application/x-www-form-urlencoded'
}
response = requests.post(
url,
data=payload,
headers=headers
)
if(response.status_code==200):
response_json = response.json()
api_key = response_json['access_token']
return True, api_key
else:
response_json = response.json()
detail = response_json['detail']
return False, detail
def get_api_key(email, password):
successful, message = api_login(email, password)
if(successful):
return os.getenv("APP_API_BASE"), message
else:
raise gr.Error(message)
return "", ""
# Define a function to get the AI's reply using the OpenAI API
def get_ai_reply(message, model="gpt-3.5-turbo", system_message=None, temperature=0, message_history=[]):
# Initialize the messages list
messages = []
# Add the system message to the messages list
if system_message is not None:
messages += [{"role": "system", "content": system_message}]
# Add the message history to the messages list
if message_history is not None:
messages += message_history
# Add the user's message to the messages list
messages += [{"role": "user", "content": message}]
# Make an API call to the OpenAI ChatCompletion endpoint with the model and messages
completion = openai.ChatCompletion.create(
model=model,
messages=messages,
temperature=temperature
)
# Extract and return the AI's response from the API response
return completion.choices[0].message.content.strip()
# Define a function to handle the chat interaction with the AI model
def chat(model, system_message, message, chatbot_messages, history_state):
# Initialize chatbot_messages and history_state if they are not provided
chatbot_messages = chatbot_messages or []
history_state = history_state or []
# Try to get the AI's reply using the get_ai_reply function
try:
ai_reply = get_ai_reply(message, model=model, system_message=system_message, message_history=history_state)
except Exception as e:
# If an error occurs, raise a Gradio error
raise gr.Error(e)
# Append the user's message and the AI's reply to the chatbot_messages list
chatbot_messages.append((message, ai_reply))
# Append the user's message and the AI's reply to the history_state list
history_state.append({"role": "user", "content": message})
history_state.append({"role": "assistant", "content": ai_reply})
# Return None (empty out the user's message textbox), the updated chatbot_messages, and the updated history_state
return None, chatbot_messages, history_state
# Define a function to launch the chatbot interface using Gradio
def get_chatbot_app(additional_examples=[]):
# Load chatbot examples and merge with any additional examples provided
examples = chatbot_examples.load_examples(additional=additional_examples)
# Define a function to get the names of the examples
def get_examples():
return [example["name"] for example in examples]
# Define a function to choose an example based on the index
def choose_example(index):
if(index!=None):
system_message = examples[index]["system_message"].strip()
user_message = examples[index]["message"].strip()
return system_message, user_message, [], []
else:
return "", "", [], []
# Create the Gradio interface using the Blocks layout
with gr.Blocks() as app:
with gr.Tab("Conversation"):
with gr.Row():
with gr.Column():
# Create a dropdown to select examples
example_dropdown = gr.Dropdown(get_examples(), label="Examples", type="index")
# Create a button to load the selected example
example_load_btn = gr.Button(value="Load")
# Create a textbox for the system message (prompt)
system_message = gr.TextArea(label="System Message (Prompt)", value="You are a helpful assistant.", lines=20, max_lines=400)
with gr.Column():
# Create a dropdown to select the AI model
model_selector = gr.Dropdown(
["gpt-3.5-turbo"],
label="Model",
value="gpt-3.5-turbo"
)
# Create a chatbot interface for the conversation
chatbot = gr.Chatbot(label="Conversation")
# Create a textbox for the user's message
message = gr.Textbox(label="Message")
# Create a state object to store the conversation history
history_state = gr.State()
# Create a button to send the user's message
btn = gr.Button(value="Send")
# Connect the example load button to the choose_example function
example_load_btn.click(choose_example, inputs=[example_dropdown], outputs=[system_message, message, chatbot, history_state])
# Connect the send button to the chat function
btn.click(chat, inputs=[model_selector, system_message, message, chatbot, history_state], outputs=[message, chatbot, history_state])
with gr.Tab("Get API Key"):
email_box = gr.Textbox(label="Email Address", placeholder="Student Email")
password_box = gr.Textbox(label="Password", type="password", placeholder="Student ID")
btn = gr.Button(value ="Generate")
api_host_box = gr.Textbox(label="OpenAI API Base", interactive=False)
api_key_box = gr.Textbox(label="OpenAI API Key", interactive=False)
btn.click(get_api_key, inputs = [email_box, password_box], outputs = [api_host_box, api_key_box])
# Return the app
return app
app = FastAPI()
app.include_router(
fastapi_users.get_auth_router(auth_backend), prefix="/auth/jwt", tags=["auth"]
)
app.include_router(
fastapi_users.get_register_router(UserRead, UserCreate),
prefix="/auth",
tags=["auth"],
)
app.include_router(
fastapi_users.get_users_router(UserRead, UserUpdate),
prefix="/users",
tags=["users"],
)
@app.get("/authenticated-route")
async def authenticated_route(user: User = Depends(current_active_user)):
return {"message": f"Hello {user.email}!"}
@app.post("/v1/chat/completions")
async def openai_api_chat_completions_passthrough(
request: Request,
user: User = Depends(fastapi_users.current_user()),
):
if not user:
raise HTTPException(status_code=401, detail="Unauthorized")
# Get the request data and headers
request_data = await request.json()
request_headers = request.headers
openai_api_key = os.getenv("OPENAI_API_KEY")
if(request_data['model']=='gpt-4' or request_data['model'] == 'gpt-4-32k'):
print("User requested gpt-4, falling back to gpt-3.5-turbo")
request_data['model'] = 'gpt-3.5-turbo'
# Forward the request to the OpenAI API
response = requests.post(
"https://api.openai.com/v1/chat/completions",
json=request_data,
headers={
"Content-Type": request_headers.get("Content-Type"),
"Authorization": f"Bearer {openai_api_key}",
},
)
print(response)
# Return the OpenAI API response
return response.json()
@app.on_event("startup")
async def on_startup():
# Not needed if you setup a migration system like Alembic
await create_db_and_tables()
gradio_gui = get_chatbot_app()
gradio_gui.auth = api_login
gradio_gui.auth_message = "Hello"
app = gr.mount_gradio_app(app, gradio_gui, path="/gradio")
|