Spaces:
Runtime error
Runtime error
File size: 11,962 Bytes
7b70181 6e8003f 7b70181 6e8003f 7b70181 6e8003f 7b70181 6e8003f 7b70181 6e8003f 7b70181 6e8003f 7b70181 6e8003f 7b70181 6e8003f 7b70181 6e8003f 7b70181 6e8003f 7b70181 6e8003f 7b70181 6e8003f 7b70181 6e8003f 7b70181 6e8003f 7b70181 6e8003f 7b70181 7515e7a 7b70181 7515e7a 7b70181 7515e7a 7b70181 7515e7a 7b70181 7515e7a 7b70181 7515e7a 7b70181 6e8003f fd85e62 21a7ced 6e8003f 21a7ced 7b70181 6e8003f 7b70181 21a7ced 7b70181 6e8003f 7b70181 6e8003f 7b70181 21a7ced 6e8003f 7b70181 6e8003f 7b70181 6e8003f 7b70181 6e8003f 7b70181 6e8003f 7b70181 6e8003f 21a7ced fd85e62 21a7ced 6e8003f 7b70181 21a7ced 7b70181 6e8003f 7b70181 fd85e62 7b70181 21a7ced 7b70181 21a7ced 7b70181 7515e7a 7b70181 7515e7a 7b70181 6e8003f 7b70181 6e8003f 7b70181 6e8003f 7b70181 6e8003f 7b70181 6e8003f 7b70181 e926e13 7b70181 7483975 7b70181 e926e13 6e8003f 7b70181 6e8003f 7b70181 7483975 7b70181 6e8003f 7b70181 6e8003f 7b70181 6e8003f 4541105 eba7095 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 |
from httpx import AsyncClient
import os
import requests
import gradio as gr
import openai
from fastapi import Depends, FastAPI, Request
from app.db import User, create_db_and_tables
from app.schemas import UserCreate, UserRead, UserUpdate
from app.users import auth_backend, current_active_user, fastapi_users
from dotenv import load_dotenv
import examples as chatbot_examples
# Get the current environment from the environment variable
current_environment = os.getenv("APP_ENV", "dev")
# Load the appropriate .env file based on the current environment
if current_environment == "dev":
load_dotenv(".env.dev")
elif current_environment == "test":
load_dotenv(".env.test")
elif current_environment == "prod":
load_dotenv(".env.prod")
else:
raise ValueError("Invalid environment specified")
def api_login(email, password):
port = os.getenv("APP_PORT")
scheme = os.getenv("APP_SCHEME")
host = os.getenv("APP_HOST")
url = f"{scheme}://{host}:{port}/auth/jwt/login"
payload = {"username": email, "password": password}
headers = {"Content-Type": "application/x-www-form-urlencoded"}
response = requests.post(url, data=payload, headers=headers)
if response.status_code == 200:
response_json = response.json()
api_key = response_json["access_token"]
return True, api_key
else:
response_json = response.json()
detail = response_json["detail"]
return False, detail
def get_api_key(email, password):
successful, message = api_login(email, password)
if successful:
return os.getenv("APP_API_BASE"), message
else:
raise gr.Error(message)
return "", ""
# Define a function to get the AI's reply using the OpenAI API
def get_ai_reply(
message,
model="gpt-3.5-turbo",
system_message=None,
temperature=0,
message_history=[],
):
# Initialize the messages list
messages = []
# Add the system message to the messages list
if system_message is not None:
messages += [{"role": "system", "content": system_message}]
# Add the message history to the messages list
if message_history is not None:
messages += message_history
# Add the user's message to the messages list
messages += [{"role": "user", "content": message}]
# Make an API call to the OpenAI ChatCompletion endpoint with the model and messages
completion = openai.ChatCompletion.create(
model=model, messages=messages, temperature=temperature
)
# Extract and return the AI's response from the API response
return completion.choices[0].message.content.strip()
def get_ai_image(prompt, size="512x512"):
response = openai.Image.create(prompt=prompt, n=1, size=size)
image_1_url = response.data[0]["url"]
return image_1_url
def get_ai_transcript(path_to_audio, language=None):
audio_file = open(path_to_audio, "rb")
transcript = openai.Audio.transcribe("whisper-1", audio_file, language=language)
return transcript.text
def generate_transcription(path_to_audio_file):
try:
transcript = get_ai_transcript(path_to_audio_file)
return transcript
except Exception as e:
raise gr.Error(e)
return ""
def generate_image(prompt):
try:
image_url = get_ai_image(prompt)
return image_url
except Exception as e:
raise gr.Error(e)
return None
# Define a function to handle the chat interaction with the AI model
def chat(message, chatbot_messages, model, temperature, system_message):
# Initialize chatbot_messages
chatbot_messages = chatbot_messages or []
history_openai_format = []
for human, assistant in chatbot_messages:
history_openai_format.append({"role": "user", "content": human})
history_openai_format.append({"role": "assistant", "content": assistant})
# Try to get the AI's reply using the get_ai_reply function
try:
ai_reply = get_ai_reply(
message,
model=model,
system_message=system_message,
message_history=history_openai_format,
temperature=temperature,
)
except Exception as e:
# If an error occurs, raise a Gradio error
raise gr.Error(e)
# Append the user's message and the AI's reply to the chatbot_messages list
chatbot_messages.append((message, ai_reply))
# Return None (empty out the user's message textbox), the updated chatbot_messages
return None, chatbot_messages
# Define a function to launch the chatbot interface using Gradio
def get_chatbot_app(additional_examples=[]):
# Load chatbot examples and merge with any additional examples provided
examples = chatbot_examples.load_examples(additional=additional_examples)
# Define a function to get the names of the examples
def get_examples():
return [example["name"] for example in examples]
# Define a function to choose an example based on the index
def choose_example(index):
if index != None:
system_message = examples[index]["system_message"].strip()
user_message = examples[index]["message"].strip()
return system_message, user_message, [], []
else:
return "", "", [], []
# Create the Gradio interface using the Blocks layout
with gr.Blocks() as app:
with gr.Tab("Conversation"):
with gr.Row():
with gr.Column():
# Create a dropdown to select examples
example_dropdown = gr.Dropdown(
get_examples(), label="Examples", type="index"
)
# Create a button to load the selected example
example_load_btn = gr.Button(value="Load")
# Create a textbox for the system message (prompt)
system_message = gr.TextArea(
label="System Message (Prompt)",
value="You are a helpful assistant.",
lines=20,
max_lines=400,
)
with gr.Column():
with gr.Row():
# Create a dropdown to select the AI model
model_selector = gr.Dropdown(
["gpt-3.5-turbo", "gpt-3.5-turbo-16k"],
label="Model",
value="gpt-3.5-turbo",
)
temperature_slider = gr.Slider(
label="Temperature", minimum=0, maximum=2, step=0.1, value=0
)
# Create a chatbot interface for the conversation
chatbot = gr.Chatbot(label="Conversation")
# Create a textbox for the user's message
message = gr.Textbox(label="Message")
# Create a button to send the user's message
btn = gr.Button(value="Send")
# Connect the example load button to the choose_example function
example_load_btn.click(
choose_example,
inputs=[example_dropdown],
outputs=[system_message, message, chatbot],
)
# Connect the send button to the chat function
btn.click(
chat,
inputs=[
message,
chatbot,
model_selector,
temperature_slider,
system_message,
],
outputs=[message, chatbot],
)
with gr.Tab("Image Generation"):
image_prompt = gr.Textbox(
label="Prompt", placeholder="A cute puppy wearing sunglasses."
)
image_btn = gr.Button(value="Generate")
image = gr.Image(label="Result", interactive=False, type="filepath")
image_btn.click(generate_image, inputs=[image_prompt], outputs=[image])
with gr.Tab("Speech-to-text"):
audio_file = gr.Audio(label="Audio", source="microphone", type="filepath")
transcribe = gr.Button(value="Transcribe")
audio_transcript = gr.Textbox(label="Transcription", interactive=False)
transcribe.click(
generate_transcription, inputs=[audio_file], outputs=[audio_transcript]
)
with gr.Tab("Get API Key"):
email_box = gr.Textbox(label="Email Address", placeholder="Student Email")
password_box = gr.Textbox(
label="Password", type="password", placeholder="Student ID"
)
btn = gr.Button(value="Generate")
api_host_box = gr.Textbox(label="OpenAI API Base", interactive=False)
api_key_box = gr.Textbox(label="OpenAI API Key", interactive=False)
btn.click(
get_api_key,
inputs=[email_box, password_box],
outputs=[api_host_box, api_key_box],
)
# Return the app
return app
app = FastAPI()
app.include_router(
fastapi_users.get_auth_router(auth_backend), prefix="/auth/jwt", tags=["auth"]
)
app.include_router(
fastapi_users.get_register_router(UserRead, UserCreate),
prefix="/auth",
tags=["auth"],
)
app.include_router(
fastapi_users.get_users_router(UserRead, UserUpdate),
prefix="/users",
tags=["users"],
)
@app.get("/authenticated-route")
async def authenticated_route(user: User = Depends(current_active_user)):
return {"message": f"Hello {user.email}!"}
@app.post("/v1/completions")
async def openai_api_completions_passthrough(
request: Request,
user: User = Depends(fastapi_users.current_user()),
):
if not user:
raise HTTPException(status_code=401, detail="Unauthorized")
# Get the request data and headers
request_data = await request.json()
request_headers = request.headers
openai_api_key = os.getenv("OPENAI_API_KEY")
# Forward the request to the OpenAI API
async with AsyncClient() as client:
response = await client.post(
"https://api.openai.com/v1/completions",
json=request_data,
headers={
"Content-Type": request_headers.get("Content-Type"),
"Authorization": f"Bearer {openai_api_key}",
},
timeout=120.0,
)
# Return the OpenAI API response
return response.json()
@app.post("/v1/chat/completions")
async def openai_api_chat_completions_passthrough(
request: Request,
user: User = Depends(fastapi_users.current_user()),
):
if not user:
raise HTTPException(status_code=401, detail="Unauthorized")
# Get the request data and headers
request_data = await request.json()
request_headers = request.headers
openai_api_key = os.getenv("OPENAI_API_KEY")
if "gpt-4" in request_data["model"]:
request_data["model"] = "gpt-3.5-turbo"
# Forward the request to the OpenAI API
async with AsyncClient() as client:
response = await client.post(
"https://api.openai.com/v1/chat/completions",
json=request_data,
headers={
"Content-Type": request_headers.get("Content-Type"),
"Authorization": f"Bearer {openai_api_key}",
},
timeout=120.0,
)
# Return the OpenAI API response
return response.json()
@app.on_event("startup")
async def on_startup():
# Not needed if you setup a migration system like Alembic
await create_db_and_tables()
gradio_gui = get_chatbot_app()
gradio_gui.auth = api_login
gradio_gui.auth_message = "Welcome, to the 4341 OpenAI Service"
app = gr.mount_gradio_app(app, gradio_gui, path="/")
|