Eric Michael Martinez
update
7515e7a
raw
history blame
10.5 kB
import httpx
import os
import requests
import gradio as gr
import openai
from fastapi import Depends, FastAPI, Request
from app.db import User, create_db_and_tables
from app.schemas import UserCreate, UserRead, UserUpdate
from app.users import auth_backend, current_active_user, fastapi_users
from dotenv import load_dotenv
import examples as chatbot_examples
# Get the current environment from the environment variable
current_environment = os.getenv("APP_ENV", "dev")
# Load the appropriate .env file based on the current environment
if current_environment == "dev":
load_dotenv(".env.dev")
elif current_environment == "test":
load_dotenv(".env.test")
elif current_environment == "prod":
load_dotenv(".env.prod")
else:
raise ValueError("Invalid environment specified")
def api_login(email, password):
port = os.getenv("APP_PORT")
scheme = os.getenv("APP_SCHEME")
host = os.getenv("APP_HOST")
url = f"{scheme}://{host}:{port}/auth/jwt/login"
payload = {
'username': email,
'password': password
}
headers = {
'Content-Type': 'application/x-www-form-urlencoded'
}
response = requests.post(
url,
data=payload,
headers=headers
)
if(response.status_code==200):
response_json = response.json()
api_key = response_json['access_token']
return True, api_key
else:
response_json = response.json()
detail = response_json['detail']
return False, detail
def get_api_key(email, password):
successful, message = api_login(email, password)
if(successful):
return os.getenv("APP_API_BASE"), message
else:
raise gr.Error(message)
return "", ""
# Define a function to get the AI's reply using the OpenAI API
def get_ai_reply(message, model="gpt-3.5-turbo", system_message=None, temperature=0, message_history=[]):
# Initialize the messages list
messages = []
# Add the system message to the messages list
if system_message is not None:
messages += [{"role": "system", "content": system_message}]
# Add the message history to the messages list
if message_history is not None:
messages += message_history
# Add the user's message to the messages list
messages += [{"role": "user", "content": message}]
# Make an API call to the OpenAI ChatCompletion endpoint with the model and messages
completion = openai.ChatCompletion.create(
model=model,
messages=messages,
temperature=temperature
)
# Extract and return the AI's response from the API response
return completion.choices[0].message.content.strip()
def get_ai_image(prompt, size="512x512"):
response = openai.Image.create(
prompt=prompt,
n=1,
size=size
)
image_1_url = response.data[0]['url']
return image_1_url
def get_ai_transcript(path_to_audio, language=None):
audio_file= open(path_to_audio, "rb")
transcript = openai.Audio.transcribe("whisper-1", audio_file, language=language)
return transcript.text
def generate_transcription(path_to_audio_file):
try:
transcript = get_ai_transcript(path_to_audio_file)
return transcript
except Exception as e:
raise gr.Error(e)
return ""
def generate_image(prompt):
try:
image_url = get_ai_image(prompt)
return image_url
except Exception as e:
raise gr.Error(e)
return None
# Define a function to handle the chat interaction with the AI model
def chat(model, system_message, message, chatbot_messages, history_state):
# Initialize chatbot_messages and history_state if they are not provided
chatbot_messages = chatbot_messages or []
history_state = history_state or []
# Try to get the AI's reply using the get_ai_reply function
try:
ai_reply = get_ai_reply(message, model=model, system_message=system_message, message_history=history_state)
except Exception as e:
# If an error occurs, raise a Gradio error
raise gr.Error(e)
# Append the user's message and the AI's reply to the chatbot_messages list
chatbot_messages.append((message, ai_reply))
# Append the user's message and the AI's reply to the history_state list
history_state.append({"role": "user", "content": message})
history_state.append({"role": "assistant", "content": ai_reply})
# Return None (empty out the user's message textbox), the updated chatbot_messages, and the updated history_state
return None, chatbot_messages, history_state
# Define a function to launch the chatbot interface using Gradio
def get_chatbot_app(additional_examples=[]):
# Load chatbot examples and merge with any additional examples provided
examples = chatbot_examples.load_examples(additional=additional_examples)
# Define a function to get the names of the examples
def get_examples():
return [example["name"] for example in examples]
# Define a function to choose an example based on the index
def choose_example(index):
if(index!=None):
system_message = examples[index]["system_message"].strip()
user_message = examples[index]["message"].strip()
return system_message, user_message, [], []
else:
return "", "", [], []
# Create the Gradio interface using the Blocks layout
with gr.Blocks() as app:
with gr.Tab("Conversation"):
with gr.Row():
with gr.Column():
# Create a dropdown to select examples
example_dropdown = gr.Dropdown(get_examples(), label="Examples", type="index")
# Create a button to load the selected example
example_load_btn = gr.Button(value="Load")
# Create a textbox for the system message (prompt)
system_message = gr.TextArea(label="System Message (Prompt)", value="You are a helpful assistant.", lines=20, max_lines=400)
with gr.Column():
# Create a dropdown to select the AI model
model_selector = gr.Dropdown(
["gpt-3.5-turbo"],
label="Model",
value="gpt-3.5-turbo"
)
# Create a chatbot interface for the conversation
chatbot = gr.Chatbot(label="Conversation")
# Create a textbox for the user's message
message = gr.Textbox(label="Message")
# Create a state object to store the conversation history
history_state = gr.State()
# Create a button to send the user's message
btn = gr.Button(value="Send")
# Connect the example load button to the choose_example function
example_load_btn.click(choose_example, inputs=[example_dropdown], outputs=[system_message, message, chatbot, history_state])
# Connect the send button to the chat function
btn.click(chat, inputs=[model_selector, system_message, message, chatbot, history_state], outputs=[message, chatbot, history_state])
with gr.Tab("Image Generation"):
image_prompt = gr.Textbox(label="Prompt", placeholder="A cute puppy wearing sunglasses.")
image_btn = gr.Button(value="Generate")
image = gr.Image(label="Result", interactive=False, type="filepath")
image_btn.click(generate_image, inputs=[image_prompt], outputs=[image])
with gr.Tab("Speech-to-text"):
audio_file = gr.Audio(label="Audio", source="microphone", type="filepath")
transcribe = gr.Button(value="Transcribe")
audio_transcript = gr.Textbox(label="Transcription", interactive=False)
transcribe.click(generate_transcription, inputs=[audio_file], outputs=[audio_transcript])
with gr.Tab("Get API Key"):
email_box = gr.Textbox(label="Email Address", placeholder="Student Email")
password_box = gr.Textbox(label="Password", type="password", placeholder="Student ID")
btn = gr.Button(value ="Generate")
api_host_box = gr.Textbox(label="OpenAI API Base", interactive=False)
api_key_box = gr.Textbox(label="OpenAI API Key", interactive=False)
btn.click(get_api_key, inputs = [email_box, password_box], outputs = [api_host_box, api_key_box])
# Return the app
return app
app = FastAPI()
app.include_router(
fastapi_users.get_auth_router(auth_backend), prefix="/auth/jwt", tags=["auth"]
)
app.include_router(
fastapi_users.get_register_router(UserRead, UserCreate),
prefix="/auth",
tags=["auth"],
)
app.include_router(
fastapi_users.get_users_router(UserRead, UserUpdate),
prefix="/users",
tags=["users"],
)
@app.get("/authenticated-route")
async def authenticated_route(user: User = Depends(current_active_user)):
return {"message": f"Hello {user.email}!"}
@app.post("/v1/chat/completions")
async def openai_api_chat_completions_passthrough(
request: Request,
user: User = Depends(fastapi_users.current_user()),
):
if not user:
raise HTTPException(status_code=401, detail="Unauthorized")
# Get the request data and headers
request_data = await request.json()
request_headers = request.headers
openai_api_key = os.getenv("OPENAI_API_KEY")
if(request_data['model']=='gpt-4' or request_data['model'] == 'gpt-4-32k'):
print("User requested gpt-4, falling back to gpt-3.5-turbo")
request_data['model'] = 'gpt-3.5-turbo'
# Forward the request to the OpenAI API
response = requests.post(
"https://api.openai.com/v1/chat/completions",
json=request_data,
headers={
"Content-Type": request_headers.get("Content-Type"),
"Authorization": f"Bearer {openai_api_key}",
},
)
print(response)
# Return the OpenAI API response
return response.json()
@app.on_event("startup")
async def on_startup():
# Not needed if you setup a migration system like Alembic
await create_db_and_tables()
gradio_gui = get_chatbot_app()
gradio_gui.auth = api_login
gradio_gui.auth_message = "Welcome, to the 3341 OpenAI Service"
app = gr.mount_gradio_app(app, gradio_gui, path="/")