""" Copyright (c) 2019-present NAVER Corp. MIT License """ # -*- coding: utf-8 -*- import numpy as np from skimage import io import cv2 def loadImage(img_file): img = io.imread(img_file) # RGB order if img.shape[0] == 2: img = img[0] if len(img.shape) == 2 : img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB) if img.shape[2] == 4: img = img[:,:,:3] img = np.array(img) return img def normalizeMeanVariance(in_img, mean=(0.485, 0.456, 0.406), variance=(0.229, 0.224, 0.225)): # should be RGB order img = in_img.copy().astype(np.float32) img -= np.array([mean[0] * 255.0, mean[1] * 255.0, mean[2] * 255.0], dtype=np.float32) img /= np.array([variance[0] * 255.0, variance[1] * 255.0, variance[2] * 255.0], dtype=np.float32) return img def denormalizeMeanVariance(in_img, mean=(0.485, 0.456, 0.406), variance=(0.229, 0.224, 0.225)): # should be RGB order img = in_img.copy() img *= variance img += mean img *= 255.0 img = np.clip(img, 0, 255).astype(np.uint8) return img def resize_aspect_ratio(img, square_size, interpolation, mag_ratio=1): height, width, channel = img.shape # magnify image size target_size = mag_ratio * max(height, width) # set original image size if target_size > square_size: target_size = square_size ratio = target_size / max(height, width) target_h, target_w = int(height * ratio), int(width * ratio) proc = cv2.resize(img, (target_w, target_h), interpolation = interpolation) # make canvas and paste image target_h32, target_w32 = target_h, target_w if target_h % 32 != 0: target_h32 = target_h + (32 - target_h % 32) if target_w % 32 != 0: target_w32 = target_w + (32 - target_w % 32) resized = np.zeros((target_h32, target_w32, channel), dtype=np.float32) resized[0:target_h, 0:target_w, :] = proc target_h, target_w = target_h32, target_w32 size_heatmap = (int(target_w/2), int(target_h/2)) return resized, ratio, size_heatmap def cvt2HeatmapImg(img): img = (np.clip(img, 0, 1) * 255).astype(np.uint8) img = cv2.applyColorMap(img, cv2.COLORMAP_JET) return img