File size: 12,543 Bytes
0df5fcd
 
ddadb1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0df5fcd
 
 
 
 
 
 
 
 
 
 
 
ddadb1a
0df5fcd
 
 
 
 
 
ddadb1a
 
 
0df5fcd
 
ddadb1a
 
 
0df5fcd
 
 
 
 
 
 
 
ddadb1a
 
0df5fcd
ddadb1a
 
0df5fcd
 
ddadb1a
 
0df5fcd
ddadb1a
 
0df5fcd
 
ddadb1a
 
 
0df5fcd
ddadb1a
 
0df5fcd
ddadb1a
 
 
0df5fcd
ddadb1a
 
 
0df5fcd
ddadb1a
 
0df5fcd
 
 
 
ddadb1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0df5fcd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ddadb1a
 
0df5fcd
 
ddadb1a
 
 
0df5fcd
 
ddadb1a
 
0df5fcd
ddadb1a
 
0df5fcd
ddadb1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0df5fcd
ddadb1a
0df5fcd
ddadb1a
 
 
0df5fcd
 
ddadb1a
 
 
 
0df5fcd
 
ddadb1a
0df5fcd
ddadb1a
 
 
0df5fcd
ddadb1a
 
 
 
0df5fcd
ddadb1a
 
 
 
 
 
 
 
 
 
 
0df5fcd
 
ddadb1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
import requests, wikipedia, re
from rank_bm25 import BM25Okapi
import streamlit as st
import pandas as pd
import spacy

####################################
## Streamlit app helper functions ##
####################################

def get_examples():
    """
    Function for loading example questions
    and contexts from examples.csv
    Parameters: None
    -----------
    Returns:
    --------
    ex_queries, ex_questions, ex_contexts : list(str), list(list(str)), list(str)
        Example search query, question, and context strings
        (each entry of ex_questions is a list of three question strings)
    """
    examples = pd.read_csv('examples.csv')
    ex_questions = [q.split(':') for q in list(examples['question'])]
    ex_contexts = list(examples['context'])
    ex_queries = list(examples['query'])
    return ex_queries, ex_questions, ex_contexts

def basic_clear_boxes():
    """
    Clears the question, context, response
    """
    for field in ['question','context','response']:
        st.session_state['basic'][field] = ''

def basic_ex_click(examples, i):
    """
    Fills in the chosen example
    """
    st.session_state['basic']['question'] = examples[1][i][0]
    st.session_state['basic']['context'] = examples[2][i]

def semi_clear_query():
    """
    Clears the search query field
    and page options list
    """
    st.session_state['semi']['query'] = ''
    for field in ['selected_pages','page_options']:
        st.session_state['semi'][field] = []

def semi_clear_question():
    """
    Clears the question and response field
    and selected pages list
    """
    for field in ['question','response']:
        st.session_state['semi'][field] = ''

def semi_ex_query_click(examples,i):
    """
    Fills in the query example and
    populates question examples when query
    example button is clicked
    """
    st.session_state['semi']['query'] = examples[0][i]
    st.session_state['semi']['ex_questions'] = examples[1][i]

def semi_ex_question_click(i):
    """
    Fills in the question example
    """
    st.session_state['semi']['question'] = st.session_state['semi']['ex_questions'][i]

def auto_clear_boxes():
    """
    Clears the response and question fields
    """
    for field in ['question','response']:
        st.session_state['auto'][field]=''

def auto_ex_click(examples,i):
    """
    Fills in the chosen example question
    """
    st.session_state['auto']['question'] = examples[1][i][0]

###########################
## Query helper function ##
###########################

def generate_query(nlp,text):
    """
    Process text into a search query,
    only retaining nouns, proper nouns,
    numerals, verbs, and adjectives
    Parameters:
    -----------
    nlp : spacy.Pipe
        spaCy pipeline for processing search query
    text : str
        The input text to be processed
    Returns:
    --------
    query : str
        The condensed search query
    """
    tokens = nlp(text)
    keep = {'PROPN', 'NUM', 'VERB', 'NOUN', 'ADJ'}
    query = ' '.join(token.text for token in tokens \
                         if token.pos_ in keep)
    return query
        
##############################
## Document retriever class ##
##############################

class ContextRetriever:
    """
    Retrieves documents from Wikipedia based on a query,
    and prepared context paragraphs for a RoBERTa model
    """
    def __init__(self,url='https://en.wikipedia.org/w/api.php'):
        self.url = url
        self.pageids = None
        self.pages = None
        self.paragraphs = None
        
    def get_pageids(self,query,topn = None):
        """
        Retrieve page ids corresponding to a search query
        Parameters:
        -----------
        query : str
            A query to use for Wikipedia page search
        topn : int or None
            If topn is provided, will only return pageids
            for topn search results
        Returns: None, but stores:
        --------
        self.pageids : list(tuple(int,str))
            A list of Wikipedia (pageid,title) tuples resulting
            from the search
        """
        params = {
            'action':'query',
            'list':'search',
            'srsearch':query,
            'format':'json',
        }
        results = requests.get(self.url, params=params).json()
        pageids = [(page['pageid'],page['title']) for page in results['query']['search']]
        pageids = pageids[:topn]
        self.pageids = pageids

    def ids_to_pages(self,ids):
        """
        Use MediaWiki API to retrieve page content corresponding to
        a list of pageids
        Parameters:
        -----------
        ids : list(tuple(int,str))
            A list of Wikipedia (pageid,title) tuples
        Returns: None, but stores
        --------
        pages : list(tuple(str,str))
            The k-th enry is a tuple consisting of the title and page content
            of the page corresponding to the k-th entry of ids
        """
        pages = []
        for pageid in ids:
            try:
                page = wikipedia.page(pageid=pageid[0],auto_suggest=False)
                pages.append((page.title, page.content))
            except wikipedia.DisambiguationError:
                continue
        return pages
    
    def get_all_pages(self):
        """
        Use MediaWiki API to retrieve page content corresponding to
        the list of pageids in self.pageids
        Parameters: None
        -----------
        Returns: None, but stores
        --------
        self.pages : list(tuple(str,str))
            The k-th enry is a tuple consisting of the title and page content
            of the page corresponding to the k-th entry of self.pageids
        """
        assert self.pageids is not None, "No pageids exist. Get pageids first using self.get_pageids"
        self.pages = self.ids_to_pages(self.pageids)

    def pages_to_paragraphs(self,pages):
        """
        Process a list of pages into a list of paragraphs from those pages
        Parameters:
        -----------
        pages : list(str)
            A list of Wikipedia page content dumps, as strings
        Returns:
        --------
        paragraphs : dict
            keys are titles of pages from pages (as strings)
            paragraphs[page] is a list of paragraphs (as strings)
            extracted from page
        """
        # Content from WikiMedia has these headings. We only grab content appearing
        # before the first instance of any of these
        pattern = '|'.join([
            '== References ==',
            '== Further reading ==',
            '== External links',
            '== See also ==',
            '== Sources ==',
            '== Notes ==',
            '== Further references ==',
            '== Footnotes ==',
            '=== Notes ===',
            '=== Sources ===',
            '=== Citations ===',
        ])
        pattern = re.compile(pattern)
        paragraphs = {}
        for page in pages:
            # Truncate page to the first index of the start of a matching heading,
            # or the end of the page if no matches exist
            title, content = page
            idx = min([match.start() for match in pattern.finditer(content)]+[len(content)])
            content = content[:idx]
            # Split into paragraphs, omitting lines with headings (start with '='),
            # empty lines, or lines like '\t\t' or '\t\t\t' which sometimes appear
            paragraphs[title] = [
                p for p in content.split('\n') if p \
                and not p.startswith('=') \
                and not p.startswith('\t\t') \
                and not p.startswith('  ')
            ]
        return paragraphs
    
    def get_all_paragraphs(self):
        """
        Process self.pages into list of paragraphs from pages
        Parameters: None
        -----------
        Returns: None, but stores
        --------
        self.paragraphs : dict
            keys are titles of pages from self.pages (as strings)
            self.paragraphs[page] is a list of paragraphs (as strings)
            extracted from page
        """
        assert self.pages is not None, "No page content exists. Get pages first using self.get_pages"
        # Content from WikiMedia has these headings. We only grab content appearing
        # before the first instance of any of these
        self.paragraphs = self.pages_to_paragraphs(self.pages)

    def rank_paragraphs(self,paragraphs,query,topn=10):
        """
        Ranks the elements of paragraphs in descending order
        by relevance to query using BM25 Okapi, and returns top
        topn results
        Parameters:
        -----------
        paragraphs : dict
            keys are titles of pages (as strings)
            paragraphs[page] is a list of paragraphs (as strings)
            extracted from page
        query : str
            The query to use in ranking paragraphs by relevance
        topn : int or None
            The number of most relevant paragraphs to return
            If None, will return roughly the top 1/4 of the
            paragraphs
        Returns:
        --------
        best_paragraphs : list(list(str,str))
            The k-th entry is a list [title,paragraph] for the k-th
            most relevant paragraph, where title is the title of the
            Wikipedia article from which that paragraph was sourced
        """
        corpus, titles, page_nums = [],[],[]
        # Compile paragraphs into corpus
        for i,page in enumerate(paragraphs):
            titles.append(page)
            paras = paragraphs[page]
            corpus += paras
            page_nums += len(paras)*[i]

        # Tokenize corpus and query and initialize bm25 object
        tokenized_corpus = [p.split(" ") for p in corpus]
        bm25 = BM25Okapi(tokenized_corpus)
        tokenized_query = query.split(" ")

        # Compute scores and compile tuples (paragraph number, score, page number)
        # before sorting tuples by score
        bm_scores = bm25.get_scores(tokenized_query)
        paragraph_data = [[i,score,page_nums[i]] for i,score in enumerate(bm_scores)]
        paragraph_data.sort(reverse=True,key=lambda p:p[1])
        
        # Grab topn best [title,paragraph] pairs sorted by bm25 score
        topn = len(paragraph_data)//4+1 if topn is None else min(topn,len(paragraph_data))

        best_paragraphs = [[titles[p[2]],corpus[p[0]]] for p in paragraph_data[:topn]]
        return best_paragraphs

def generate_answer(pipeline,paragraphs, question):
    """
    Generate an answer using a question-answer pipeline
    Parameters:
    -----------
    pipeline : transformers.QuestionAnsweringPipeline
        The question answering pipeline object
    paragraphs : list(list(str,str))
        The k-th entry is a list [title,paragraph] consisting
        of a context paragraph and the title of the page from which the
        paragraph was sourced
    question : str
        A question that is to be answered based on context given
        in the entries of paragraphs

    Returns:
    --------
    response : str
        A response indicating the answer that was discovered,
        or indicating that no answer could be found.
    """
    # For each paragraph, format input to QA pipeline...
    for paragraph in paragraphs:
        input = {
            'context':paragraph[1],
            'question':question,
        }
        # ...and pass to QA pipeline
        output = pipeline(**input)
        # Append answers and scores.  Report score of
        # zero for paragraphs without answer, so they are
        # deprioritized when the max is taken below
        if output['answer']!='':
            paragraph += [output['answer'],output['score']]               
        else:
            paragraph += ['',0]
    # Get paragraph with max confidence score and collect data
    best_paragraph = max(paragraphs,key = lambda x:x[3])
    best_answer = best_paragraph[2]
    best_context_page = best_paragraph[0]
    best_context = best_paragraph[1]
                
    # Update response in session state
    if best_answer == "":
        response = "I cannot find the answer to your question."
    else:
        response = f"""
            My answer is: {best_answer}
                    
            ...and here's where I found it:
                    
            Page title: {best_context_page}

            Paragraph containing answer:

            {best_context}
            """
    return response