# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# Updated to account for UI changes from https://github.com/rkfg/audiocraft/blob/long/app.py
# also released under the MIT license.
import argparse
import logging
import os
import subprocess as sp
import sys
import time
import typing as tp
import warnings
from concurrent.futures import ProcessPoolExecutor
from pathlib import Path
from tempfile import NamedTemporaryFile
import gradio as gr
import torch
from einops import rearrange
from omegaconf import DictConfig, OmegaConf
from audiocraft.data.audio import audio_write
from audiocraft.data.audio_utils import convert_audio
from audiocraft.models import MultiBandDiffusion, MusicGen
from audiocraft.models.builders import get_lm_model
from audiocraft.models.encodec import CompressionModel, InterleaveStereoCompressionModel
MODEL = None # Last used model
SPACE_ID = os.environ.get("SPACE_ID", "")
IS_BATCHED = (
"facebook/MusicGen" in SPACE_ID or "musicgen-internal/musicgen_dev" in SPACE_ID
)
print(IS_BATCHED)
MAX_BATCH_SIZE = 12
BATCHED_DURATION = 15
INTERRUPTING = False
MBD = None
# We have to wrap subprocess call to clean a bit the log when using gr.make_waveform
_old_call = sp.call
def _call_nostderr(*args, **kwargs):
# Avoid ffmpeg vomiting on the logs.
kwargs["stderr"] = sp.DEVNULL
kwargs["stdout"] = sp.DEVNULL
_old_call(*args, **kwargs)
sp.call = _call_nostderr
# Preallocating the pool of processes.
pool = ProcessPoolExecutor(4)
pool.__enter__()
def interrupt():
global INTERRUPTING
INTERRUPTING = True
class FileCleaner:
def __init__(self, file_lifetime: float = 3600):
self.file_lifetime = file_lifetime
self.files = []
def add(self, path: tp.Union[str, Path]):
self._cleanup()
self.files.append((time.time(), Path(path)))
def _cleanup(self):
now = time.time()
for time_added, path in list(self.files):
if now - time_added > self.file_lifetime:
if path.exists():
path.unlink()
self.files.pop(0)
else:
break
file_cleaner = FileCleaner()
def make_waveform(*args, **kwargs):
# Further remove some warnings.
be = time.time()
with warnings.catch_warnings():
warnings.simplefilter("ignore")
out = gr.make_waveform(*args, **kwargs)
print("Make a video took", time.time() - be)
return out
def _delete_param(cfg: DictConfig, full_name: str):
parts = full_name.split(".")
for part in parts[:-1]:
if part in cfg:
cfg = cfg[part]
else:
return
OmegaConf.set_struct(cfg, False)
if parts[-1] in cfg:
del cfg[parts[-1]]
OmegaConf.set_struct(cfg, True)
def load_lm_model(
file_or_url_or_id: tp.Union[Path, str],
device=None,
):
pkg = torch.load(file_or_url_or_id, map_location=device)
cfg = OmegaConf.create(pkg["xp.cfg"])
cfg.device = str(device)
if cfg.device == "cpu":
cfg.dtype = "float32"
else:
cfg.dtype = "float16"
_delete_param(cfg, "conditioners.self_wav.chroma_stem.cache_path")
_delete_param(cfg, "conditioners.args.merge_text_conditions_p")
_delete_param(cfg, "conditioners.args.drop_desc_p")
model = get_lm_model(cfg)
model.load_state_dict(pkg["best_state"])
model.eval()
model.cfg = cfg
return model
def load_compression_model(file_or_url_or_id: tp.Union[Path, str], device=None):
return CompressionModel.get_pretrained(file_or_url_or_id, device=device)
def load_model(version="facebook/musicgen-small"):
global MODEL
print("Loading Musivesal musicgen-small") # , version
if MODEL is None or MODEL.name != version:
# Clear PyTorch CUDA cache and delete model
del MODEL
torch.cuda.empty_cache()
MODEL = None # in case loading would crash
# MODEL = MusicGen.get_pretrained("/Users/ebenge/repos/audiocraft/data/")
lm = load_lm_model("data/state_dict.bin", device="cpu")
compression_model = load_compression_model(
"facebook/encodec_32khz", device="cpu"
)
MODEL = MusicGen("musiversal/musicgen-small", compression_model, lm)
print("Custom model loaded.")
# def load_model(version="facebook/musicgen-small"):
# global MODEL
# print("Loading Musivesal musicgen-small") # , version
# if MODEL is None or MODEL.name != version:
# # Clear PyTorch CUDA cache and delete model
# del MODEL
# torch.cuda.empty_cache()
# MODEL = None # in case loading would crash
# MODEL = MusicGen.get_pretrained("data")
# print("Custom model loaded.")
def load_diffusion():
global MBD
if MBD is None:
print("loading MBD")
MBD = MultiBandDiffusion.get_mbd_musicgen()
def _do_predictions(
texts, melodies, duration, progress=False, gradio_progress=None, **gen_kwargs
):
MODEL.set_generation_params(duration=duration, **gen_kwargs)
print(
"new batch",
len(texts),
texts,
[None if m is None else (m[0], m[1].shape) for m in melodies],
)
be = time.time()
processed_melodies = []
target_sr = 32000
target_ac = 1
for melody in melodies:
if melody is None:
processed_melodies.append(None)
else:
sr, melody = (
melody[0],
torch.from_numpy(melody[1]).to(MODEL.device).float().t(),
)
if melody.dim() == 1:
melody = melody[None]
melody = melody[..., : int(sr * duration)]
melody = convert_audio(melody, sr, target_sr, target_ac)
processed_melodies.append(melody)
try:
if any(m is not None for m in processed_melodies):
outputs = MODEL.generate_with_chroma(
descriptions=texts,
melody_wavs=processed_melodies,
melody_sample_rate=target_sr,
progress=progress,
return_tokens=USE_DIFFUSION,
)
else:
outputs = MODEL.generate(
texts, progress=progress, return_tokens=USE_DIFFUSION
)
except RuntimeError as e:
raise gr.Error("Error while generating " + e.args[0])
if USE_DIFFUSION:
if gradio_progress is not None:
gradio_progress(1, desc="Running MultiBandDiffusion...")
tokens = outputs[1]
if isinstance(MODEL.compression_model, InterleaveStereoCompressionModel):
left, right = MODEL.compression_model.get_left_right_codes(tokens)
tokens = torch.cat([left, right])
outputs_diffusion = MBD.tokens_to_wav(tokens)
if isinstance(MODEL.compression_model, InterleaveStereoCompressionModel):
assert outputs_diffusion.shape[1] == 1 # output is mono
outputs_diffusion = rearrange(
outputs_diffusion, "(s b) c t -> b (s c) t", s=2
)
outputs = torch.cat([outputs[0], outputs_diffusion], dim=0)
outputs = outputs.detach().cpu().float()
pending_videos = []
out_wavs = []
for output in outputs:
with NamedTemporaryFile("wb", suffix=".wav", delete=False) as file:
audio_write(
file.name,
output,
MODEL.sample_rate,
strategy="loudness",
loudness_headroom_db=16,
loudness_compressor=True,
add_suffix=False,
)
pending_videos.append(pool.submit(make_waveform, file.name))
out_wavs.append(file.name)
file_cleaner.add(file.name)
out_videos = [pending_video.result() for pending_video in pending_videos]
for video in out_videos:
file_cleaner.add(video)
print("batch finished", len(texts), time.time() - be)
print("Tempfiles currently stored: ", len(file_cleaner.files))
return out_videos, out_wavs
def predict_batched(texts, melodies):
max_text_length = 512
texts = [text[:max_text_length] for text in texts]
load_model("facebook/musicgen-stereo-melody")
res = _do_predictions(texts, melodies, BATCHED_DURATION)
return res
def predict_full(
# model,
# model_path,
decoder,
text,
melody,
duration,
topk,
topp,
temperature,
cfg_coef,
progress=gr.Progress(),
):
global INTERRUPTING
global USE_DIFFUSION
INTERRUPTING = False
progress(0, desc="Loading model...")
# model_path = model_path.strip()
# if model_path:
# if not Path(model_path).exists():
# raise gr.Error(f"Model path {model_path} doesn't exist.")
# if not Path(model_path).is_dir():
# raise gr.Error(
# f"Model path {model_path} must be a folder containing "
# "state_dict.bin and compression_state_dict_.bin."
# )
# model = model_path
if temperature < 0:
raise gr.Error("Temperature must be >= 0.")
if topk < 0:
raise gr.Error("Topk must be non-negative.")
if topp < 0:
raise gr.Error("Topp must be non-negative.")
topk = int(topk)
if decoder == "MultiBand_Diffusion":
USE_DIFFUSION = True
progress(0, desc="Loading diffusion model...")
load_diffusion()
else:
USE_DIFFUSION = False
load_model()
# load_model(model)
max_generated = 0
def _progress(generated, to_generate):
nonlocal max_generated
max_generated = max(generated, max_generated)
progress((min(max_generated, to_generate), to_generate))
if INTERRUPTING:
raise gr.Error("Interrupted.")
MODEL.set_custom_progress_callback(_progress)
videos, wavs = _do_predictions(
[text],
[melody],
duration,
progress=True,
top_k=topk,
top_p=topp,
temperature=temperature,
cfg_coef=cfg_coef,
gradio_progress=progress,
)
if USE_DIFFUSION:
return videos[0], wavs[0], videos[1], wavs[1]
return videos[0], wavs[0], None, None
def toggle_audio_src(choice):
if choice == "mic":
return gr.update(source="microphone", value=None, label="Microphone")
else:
return gr.update(source="upload", value=None, label="File")
def toggle_diffusion(choice):
if choice == "MultiBand_Diffusion":
return [gr.update(visible=True)] * 2
else:
return [gr.update(visible=False)] * 2
def ui_full(launch_kwargs):
with gr.Blocks() as interface:
gr.Markdown(
"""
# MusicGen
This is a private demo of [MusicGen](https://github.com/facebookresearch/audiocraft),
a simple and controllable model for music generation
presented at: ["Simple and Controllable Music Generation"](https://huggingface.co/papers/2306.05284).
This Space hosts **"facebook/musicgen-small"**. It has been finetuned on a proprietary keyboard dataset from [Musiversal](https://musiversal.com/).
"""
)
with gr.Row():
with gr.Column():
with gr.Row():
text = gr.Text(label="Input Text", interactive=True)
with gr.Column():
radio = gr.Radio(
["file", "mic"],
value="file",
label="Condition on a melody (optional) File or Mic",
)
melody = gr.Audio(
sources=["upload"],
type="numpy",
label="File",
interactive=True,
elem_id="melody-input",
)
with gr.Row():
submit = gr.Button("Submit")
# Adapted from https://github.com/rkfg/audiocraft/blob/long/app.py, MIT license.
_ = gr.Button("Interrupt").click(fn=interrupt, queue=False)
# with gr.Row():
# model = gr.Radio(
# [
# "facebook/musicgen-melody",
# "facebook/musicgen-medium",
# "facebook/musicgen-small",
# "facebook/musicgen-large",
# "facebook/musicgen-melody-large",
# "facebook/musicgen-stereo-small",
# "facebook/musicgen-stereo-medium",
# "facebook/musicgen-stereo-melody",
# "facebook/musicgen-stereo-large",
# "facebook/musicgen-stereo-melody-large",
# ],
# label="Model",
# value="facebook/musicgen-stereo-melody",
# interactive=True,
# )
# model_path = gr.Text(label="Model Path (custom models)")
with gr.Row():
decoder = gr.Radio(
["Default", "MultiBand_Diffusion"],
label="Decoder",
value="Default",
interactive=True,
)
with gr.Row():
duration = gr.Slider(
minimum=1,
maximum=60,
value=10,
label="Duration",
interactive=True,
)
with gr.Row():
topk = gr.Number(label="Top-k", value=250, interactive=True)
topp = gr.Number(label="Top-p", value=0, interactive=True)
temperature = gr.Number(
label="Temperature", value=1.0, interactive=True
)
cfg_coef = gr.Number(
label="Classifier Free Guidance", value=3.0, interactive=True
)
with gr.Column():
output = gr.Video(label="Generated Music")
audio_output = gr.Audio(label="Generated Music (wav)", type="filepath")
diffusion_output = gr.Video(label="MultiBand Diffusion Decoder")
audio_diffusion = gr.Audio(
label="MultiBand Diffusion Decoder (wav)", type="filepath"
)
submit.click(
toggle_diffusion,
decoder,
[diffusion_output, audio_diffusion],
queue=False,
show_progress=False,
).then(
predict_full,
inputs=[
# model,
# model_path,
decoder,
text,
melody,
duration,
topk,
topp,
temperature,
cfg_coef,
],
outputs=[output, audio_output, diffusion_output, audio_diffusion],
)
radio.change(
toggle_audio_src, radio, [melody], queue=False, show_progress=False
)
# gr.Examples(
# fn=predict_full,
# examples=[
# [
# "An 80s driving pop song with heavy drums and synth pads in the background",
# "./assets/bach.mp3",
# "facebook/musicgen-stereo-melody",
# "Default",
# ],
# [
# "A cheerful country song with acoustic guitars",
# "./assets/bolero_ravel.mp3",
# "facebook/musicgen-stereo-melody",
# "Default",
# ],
# [
# "90s rock song with electric guitar and heavy drums",
# None,
# "facebook/musicgen-stereo-medium",
# "Default",
# ],
# [
# "a light and cheerly EDM track, with syncopated drums, aery pads, and strong emotions",
# "./assets/bach.mp3",
# "facebook/musicgen-stereo-melody",
# "Default",
# ],
# [
# "lofi slow bpm electro chill with organic samples",
# None,
# "facebook/musicgen-stereo-medium",
# "Default",
# ],
# [
# "Punk rock with loud drum and power guitar",
# None,
# "facebook/musicgen-stereo-medium",
# "MultiBand_Diffusion",
# ],
# ],
# inputs=[text, melody, model, decoder],
# outputs=[output],
# )
gr.Markdown(
"""
### More details
The model will generate a short music extract based on the description you provided.
The model can generate up to 30 seconds of audio in one pass.
The model was trained with description from a stock music catalog, descriptions that will work best
should include some level of details on the instruments present, along with some intended use case
(e.g. adding "perfect for a commercial" can somehow help).
Using one of the `melody` model (e.g. `musicgen-melody-*`), you can optionally provide a reference audio
from which a broad melody will be extracted.
The model will then try to follow both the description and melody provided.
For best results, the melody should be 30 seconds long (I know, the samples we provide are not...)
It is now possible to extend the generation by feeding back the end of the previous chunk of audio.
This can take a long time, and the model might lose consistency. The model might also
decide at arbitrary positions that the song ends.
**WARNING:** Choosing long durations will take a long time to generate (2min might take ~10min).
An overlap of 12 seconds is kept with the previously generated chunk, and 18 "new" seconds
are generated each time.
There are 10 model variations:
1. facebook/musicgen-melody -- a music generation model capable of generating music condition
on text and melody inputs. **Note**, you can also use text only.
2. facebook/musicgen-small -- a 300M transformer decoder conditioned on text only.
3. facebook/musicgen-medium -- a 1.5B transformer decoder conditioned on text only.
4. facebook/musicgen-large -- a 3.3B transformer decoder conditioned on text only.
5. facebook/musicgen-melody-large -- a 3.3B transformer decoder conditioned on and melody.
6. facebook/musicgen-stereo-*: same as the previous models but fine tuned to output stereo audio.
**This is space only provides Musiversal's finetuning of 'facebook/musicgen-small'.**
We also present two way of decoding the audio tokens
1. Use the default GAN based compression model. It can suffer from artifacts especially
for crashes, snares etc.
2. Use [MultiBand Diffusion](https://arxiv.org/abs/2308.02560). Should improve the audio quality,
at an extra computational cost. When this is selected, we provide both the GAN based decoded
audio, and the one obtained with MBD.
See [github.com/facebookresearch/audiocraft](https://github.com/facebookresearch/audiocraft/blob/main/docs/MUSICGEN.md)
for more details.
"""
)
interface.queue().launch(**launch_kwargs)
def ui_batched(launch_kwargs):
with gr.Blocks() as demo:
gr.Markdown(
"""
# MusicGen
This is the demo for [MusicGen](https://github.com/facebookresearch/audiocraft/blob/main/docs/MUSICGEN.md),
a simple and controllable model for music generation
presented at: ["Simple and Controllable Music Generation"](https://huggingface.co/papers/2306.05284).
for longer sequences, more control and no queue.