# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # Updated to account for UI changes from https://github.com/rkfg/audiocraft/blob/long/app.py # also released under the MIT license. import argparse import logging import os import subprocess as sp import sys import time import typing as tp import warnings from concurrent.futures import ProcessPoolExecutor from pathlib import Path from tempfile import NamedTemporaryFile import gradio as gr import torch from einops import rearrange from omegaconf import DictConfig, OmegaConf from audiocraft.data.audio import audio_write from audiocraft.data.audio_utils import convert_audio from audiocraft.models import MultiBandDiffusion, MusicGen from audiocraft.models.builders import get_lm_model from audiocraft.models.encodec import CompressionModel, InterleaveStereoCompressionModel MODEL = None # Last used model SPACE_ID = os.environ.get("SPACE_ID", "") IS_BATCHED = ( "facebook/MusicGen" in SPACE_ID or "musicgen-internal/musicgen_dev" in SPACE_ID ) print(IS_BATCHED) MAX_BATCH_SIZE = 12 BATCHED_DURATION = 15 INTERRUPTING = False MBD = None # We have to wrap subprocess call to clean a bit the log when using gr.make_waveform _old_call = sp.call def _call_nostderr(*args, **kwargs): # Avoid ffmpeg vomiting on the logs. kwargs["stderr"] = sp.DEVNULL kwargs["stdout"] = sp.DEVNULL _old_call(*args, **kwargs) sp.call = _call_nostderr # Preallocating the pool of processes. pool = ProcessPoolExecutor(4) pool.__enter__() def interrupt(): global INTERRUPTING INTERRUPTING = True class FileCleaner: def __init__(self, file_lifetime: float = 3600): self.file_lifetime = file_lifetime self.files = [] def add(self, path: tp.Union[str, Path]): self._cleanup() self.files.append((time.time(), Path(path))) def _cleanup(self): now = time.time() for time_added, path in list(self.files): if now - time_added > self.file_lifetime: if path.exists(): path.unlink() self.files.pop(0) else: break file_cleaner = FileCleaner() def make_waveform(*args, **kwargs): # Further remove some warnings. be = time.time() with warnings.catch_warnings(): warnings.simplefilter("ignore") out = gr.make_waveform(*args, **kwargs) print("Make a video took", time.time() - be) return out def _delete_param(cfg: DictConfig, full_name: str): parts = full_name.split(".") for part in parts[:-1]: if part in cfg: cfg = cfg[part] else: return OmegaConf.set_struct(cfg, False) if parts[-1] in cfg: del cfg[parts[-1]] OmegaConf.set_struct(cfg, True) def load_lm_model( file_or_url_or_id: tp.Union[Path, str], device=None, ): pkg = torch.load(file_or_url_or_id, map_location=device) cfg = OmegaConf.create(pkg["xp.cfg"]) cfg.device = str(device) if cfg.device == "cpu": cfg.dtype = "float32" else: cfg.dtype = "float16" _delete_param(cfg, "conditioners.self_wav.chroma_stem.cache_path") _delete_param(cfg, "conditioners.args.merge_text_conditions_p") _delete_param(cfg, "conditioners.args.drop_desc_p") model = get_lm_model(cfg) model.load_state_dict(pkg["best_state"]) model.eval() model.cfg = cfg return model def load_compression_model(file_or_url_or_id: tp.Union[Path, str], device=None): return CompressionModel.get_pretrained(file_or_url_or_id, device=device) def load_model(version="facebook/musicgen-small"): global MODEL print("Loading Musivesal musicgen-small") # , version if MODEL is None or MODEL.name != version: # Clear PyTorch CUDA cache and delete model del MODEL torch.cuda.empty_cache() MODEL = None # in case loading would crash # MODEL = MusicGen.get_pretrained("/Users/ebenge/repos/audiocraft/data/") lm = load_lm_model("data/state_dict.bin", device="cpu") compression_model = load_compression_model( "facebook/encodec_32khz", device="cpu" ) MODEL = MusicGen("musiversal/musicgen-small", compression_model, lm) print("Custom model loaded.") # def load_model(version="facebook/musicgen-small"): # global MODEL # print("Loading Musivesal musicgen-small") # , version # if MODEL is None or MODEL.name != version: # # Clear PyTorch CUDA cache and delete model # del MODEL # torch.cuda.empty_cache() # MODEL = None # in case loading would crash # MODEL = MusicGen.get_pretrained("data") # print("Custom model loaded.") def load_diffusion(): global MBD if MBD is None: print("loading MBD") MBD = MultiBandDiffusion.get_mbd_musicgen() def _do_predictions( texts, melodies, duration, progress=False, gradio_progress=None, **gen_kwargs ): MODEL.set_generation_params(duration=duration, **gen_kwargs) print( "new batch", len(texts), texts, [None if m is None else (m[0], m[1].shape) for m in melodies], ) be = time.time() processed_melodies = [] target_sr = 32000 target_ac = 1 for melody in melodies: if melody is None: processed_melodies.append(None) else: sr, melody = ( melody[0], torch.from_numpy(melody[1]).to(MODEL.device).float().t(), ) if melody.dim() == 1: melody = melody[None] melody = melody[..., : int(sr * duration)] melody = convert_audio(melody, sr, target_sr, target_ac) processed_melodies.append(melody) try: if any(m is not None for m in processed_melodies): outputs = MODEL.generate_with_chroma( descriptions=texts, melody_wavs=processed_melodies, melody_sample_rate=target_sr, progress=progress, return_tokens=USE_DIFFUSION, ) else: outputs = MODEL.generate( texts, progress=progress, return_tokens=USE_DIFFUSION ) except RuntimeError as e: raise gr.Error("Error while generating " + e.args[0]) if USE_DIFFUSION: if gradio_progress is not None: gradio_progress(1, desc="Running MultiBandDiffusion...") tokens = outputs[1] if isinstance(MODEL.compression_model, InterleaveStereoCompressionModel): left, right = MODEL.compression_model.get_left_right_codes(tokens) tokens = torch.cat([left, right]) outputs_diffusion = MBD.tokens_to_wav(tokens) if isinstance(MODEL.compression_model, InterleaveStereoCompressionModel): assert outputs_diffusion.shape[1] == 1 # output is mono outputs_diffusion = rearrange( outputs_diffusion, "(s b) c t -> b (s c) t", s=2 ) outputs = torch.cat([outputs[0], outputs_diffusion], dim=0) outputs = outputs.detach().cpu().float() pending_videos = [] out_wavs = [] for output in outputs: with NamedTemporaryFile("wb", suffix=".wav", delete=False) as file: audio_write( file.name, output, MODEL.sample_rate, strategy="loudness", loudness_headroom_db=16, loudness_compressor=True, add_suffix=False, ) pending_videos.append(pool.submit(make_waveform, file.name)) out_wavs.append(file.name) file_cleaner.add(file.name) out_videos = [pending_video.result() for pending_video in pending_videos] for video in out_videos: file_cleaner.add(video) print("batch finished", len(texts), time.time() - be) print("Tempfiles currently stored: ", len(file_cleaner.files)) return out_videos, out_wavs def predict_batched(texts, melodies): max_text_length = 512 texts = [text[:max_text_length] for text in texts] load_model("facebook/musicgen-stereo-melody") res = _do_predictions(texts, melodies, BATCHED_DURATION) return res def predict_full( # model, # model_path, decoder, text, melody, duration, topk, topp, temperature, cfg_coef, progress=gr.Progress(), ): global INTERRUPTING global USE_DIFFUSION INTERRUPTING = False progress(0, desc="Loading model...") # model_path = model_path.strip() # if model_path: # if not Path(model_path).exists(): # raise gr.Error(f"Model path {model_path} doesn't exist.") # if not Path(model_path).is_dir(): # raise gr.Error( # f"Model path {model_path} must be a folder containing " # "state_dict.bin and compression_state_dict_.bin." # ) # model = model_path if temperature < 0: raise gr.Error("Temperature must be >= 0.") if topk < 0: raise gr.Error("Topk must be non-negative.") if topp < 0: raise gr.Error("Topp must be non-negative.") topk = int(topk) if decoder == "MultiBand_Diffusion": USE_DIFFUSION = True progress(0, desc="Loading diffusion model...") load_diffusion() else: USE_DIFFUSION = False load_model() # load_model(model) max_generated = 0 def _progress(generated, to_generate): nonlocal max_generated max_generated = max(generated, max_generated) progress((min(max_generated, to_generate), to_generate)) if INTERRUPTING: raise gr.Error("Interrupted.") MODEL.set_custom_progress_callback(_progress) videos, wavs = _do_predictions( [text], [melody], duration, progress=True, top_k=topk, top_p=topp, temperature=temperature, cfg_coef=cfg_coef, gradio_progress=progress, ) if USE_DIFFUSION: return videos[0], wavs[0], videos[1], wavs[1] return videos[0], wavs[0], None, None def toggle_audio_src(choice): if choice == "mic": return gr.update(source="microphone", value=None, label="Microphone") else: return gr.update(source="upload", value=None, label="File") def toggle_diffusion(choice): if choice == "MultiBand_Diffusion": return [gr.update(visible=True)] * 2 else: return [gr.update(visible=False)] * 2 def ui_full(launch_kwargs): with gr.Blocks() as interface: gr.Markdown( """ # MusicGen This is a private demo of [MusicGen](https://github.com/facebookresearch/audiocraft), a simple and controllable model for music generation presented at: ["Simple and Controllable Music Generation"](https://huggingface.co/papers/2306.05284). This Space hosts **"facebook/musicgen-small"**. It has been finetuned on a proprietary keyboard dataset from [Musiversal](https://musiversal.com/). """ ) with gr.Row(): with gr.Column(): with gr.Row(): text = gr.Text(label="Input Text", interactive=True) with gr.Column(): radio = gr.Radio( ["file", "mic"], value="file", label="Condition on a melody (optional) File or Mic", ) melody = gr.Audio( sources=["upload"], type="numpy", label="File", interactive=True, elem_id="melody-input", ) with gr.Row(): submit = gr.Button("Submit") # Adapted from https://github.com/rkfg/audiocraft/blob/long/app.py, MIT license. _ = gr.Button("Interrupt").click(fn=interrupt, queue=False) # with gr.Row(): # model = gr.Radio( # [ # "facebook/musicgen-melody", # "facebook/musicgen-medium", # "facebook/musicgen-small", # "facebook/musicgen-large", # "facebook/musicgen-melody-large", # "facebook/musicgen-stereo-small", # "facebook/musicgen-stereo-medium", # "facebook/musicgen-stereo-melody", # "facebook/musicgen-stereo-large", # "facebook/musicgen-stereo-melody-large", # ], # label="Model", # value="facebook/musicgen-stereo-melody", # interactive=True, # ) # model_path = gr.Text(label="Model Path (custom models)") with gr.Row(): decoder = gr.Radio( ["Default", "MultiBand_Diffusion"], label="Decoder", value="Default", interactive=True, ) with gr.Row(): duration = gr.Slider( minimum=1, maximum=60, value=10, label="Duration", interactive=True, ) with gr.Row(): topk = gr.Number(label="Top-k", value=250, interactive=True) topp = gr.Number(label="Top-p", value=0, interactive=True) temperature = gr.Number( label="Temperature", value=1.0, interactive=True ) cfg_coef = gr.Number( label="Classifier Free Guidance", value=3.0, interactive=True ) with gr.Column(): output = gr.Video(label="Generated Music") audio_output = gr.Audio(label="Generated Music (wav)", type="filepath") diffusion_output = gr.Video(label="MultiBand Diffusion Decoder") audio_diffusion = gr.Audio( label="MultiBand Diffusion Decoder (wav)", type="filepath" ) submit.click( toggle_diffusion, decoder, [diffusion_output, audio_diffusion], queue=False, show_progress=False, ).then( predict_full, inputs=[ # model, # model_path, decoder, text, melody, duration, topk, topp, temperature, cfg_coef, ], outputs=[output, audio_output, diffusion_output, audio_diffusion], ) radio.change( toggle_audio_src, radio, [melody], queue=False, show_progress=False ) # gr.Examples( # fn=predict_full, # examples=[ # [ # "An 80s driving pop song with heavy drums and synth pads in the background", # "./assets/bach.mp3", # "facebook/musicgen-stereo-melody", # "Default", # ], # [ # "A cheerful country song with acoustic guitars", # "./assets/bolero_ravel.mp3", # "facebook/musicgen-stereo-melody", # "Default", # ], # [ # "90s rock song with electric guitar and heavy drums", # None, # "facebook/musicgen-stereo-medium", # "Default", # ], # [ # "a light and cheerly EDM track, with syncopated drums, aery pads, and strong emotions", # "./assets/bach.mp3", # "facebook/musicgen-stereo-melody", # "Default", # ], # [ # "lofi slow bpm electro chill with organic samples", # None, # "facebook/musicgen-stereo-medium", # "Default", # ], # [ # "Punk rock with loud drum and power guitar", # None, # "facebook/musicgen-stereo-medium", # "MultiBand_Diffusion", # ], # ], # inputs=[text, melody, model, decoder], # outputs=[output], # ) gr.Markdown( """ ### More details The model will generate a short music extract based on the description you provided. The model can generate up to 30 seconds of audio in one pass. The model was trained with description from a stock music catalog, descriptions that will work best should include some level of details on the instruments present, along with some intended use case (e.g. adding "perfect for a commercial" can somehow help). Using one of the `melody` model (e.g. `musicgen-melody-*`), you can optionally provide a reference audio from which a broad melody will be extracted. The model will then try to follow both the description and melody provided. For best results, the melody should be 30 seconds long (I know, the samples we provide are not...) It is now possible to extend the generation by feeding back the end of the previous chunk of audio. This can take a long time, and the model might lose consistency. The model might also decide at arbitrary positions that the song ends. **WARNING:** Choosing long durations will take a long time to generate (2min might take ~10min). An overlap of 12 seconds is kept with the previously generated chunk, and 18 "new" seconds are generated each time. There are 10 model variations: 1. facebook/musicgen-melody -- a music generation model capable of generating music condition on text and melody inputs. **Note**, you can also use text only. 2. facebook/musicgen-small -- a 300M transformer decoder conditioned on text only. 3. facebook/musicgen-medium -- a 1.5B transformer decoder conditioned on text only. 4. facebook/musicgen-large -- a 3.3B transformer decoder conditioned on text only. 5. facebook/musicgen-melody-large -- a 3.3B transformer decoder conditioned on and melody. 6. facebook/musicgen-stereo-*: same as the previous models but fine tuned to output stereo audio. **This is space only provides Musiversal's finetuning of 'facebook/musicgen-small'.** We also present two way of decoding the audio tokens 1. Use the default GAN based compression model. It can suffer from artifacts especially for crashes, snares etc. 2. Use [MultiBand Diffusion](https://arxiv.org/abs/2308.02560). Should improve the audio quality, at an extra computational cost. When this is selected, we provide both the GAN based decoded audio, and the one obtained with MBD. See [github.com/facebookresearch/audiocraft](https://github.com/facebookresearch/audiocraft/blob/main/docs/MUSICGEN.md) for more details. """ ) interface.queue().launch(**launch_kwargs) def ui_batched(launch_kwargs): with gr.Blocks() as demo: gr.Markdown( """ # MusicGen This is the demo for [MusicGen](https://github.com/facebookresearch/audiocraft/blob/main/docs/MUSICGEN.md), a simple and controllable model for music generation presented at: ["Simple and Controllable Music Generation"](https://huggingface.co/papers/2306.05284).
Duplicate Space for longer sequences, more control and no queue.

""" ) with gr.Row(): with gr.Column(): with gr.Row(): text = gr.Text( label="Describe your music", lines=2, interactive=True ) with gr.Column(): radio = gr.Radio( ["file", "mic"], value="file", label="Condition on a melody (optional) File or Mic", ) melody = gr.Audio( source="upload", type="numpy", label="File", interactive=True, elem_id="melody-input", ) with gr.Row(): submit = gr.Button("Generate") with gr.Column(): output = gr.Video(label="Generated Music") audio_output = gr.Audio(label="Generated Music (wav)", type="filepath") submit.click( predict_batched, inputs=[text, melody], outputs=[output, audio_output], batch=True, max_batch_size=MAX_BATCH_SIZE, ) radio.change( toggle_audio_src, radio, [melody], queue=False, show_progress=False ) gr.Examples( fn=predict_batched, examples=[ [ "An 80s driving pop song with heavy drums and synth pads in the background", "./assets/bach.mp3", ], [ "A cheerful country song with acoustic guitars", "./assets/bolero_ravel.mp3", ], [ "90s rock song with electric guitar and heavy drums", None, ], [ "a light and cheerly EDM track, with syncopated drums, aery pads, and strong emotions bpm: 130", "./assets/bach.mp3", ], [ "lofi slow bpm electro chill with organic samples", None, ], ], inputs=[text, melody], outputs=[output], ) gr.Markdown(""" ### More details The model will generate 15 seconds of audio based on the description you provided. The model was trained with description from a stock music catalog, descriptions that will work best should include some level of details on the instruments present, along with some intended use case (e.g. adding "perfect for a commercial" can somehow help). You can optionally provide a reference audio from which a broad melody will be extracted. The model will then try to follow both the description and melody provided. For best results, the melody should be 30 seconds long (I know, the samples we provide are not...) You can access more control (longer generation, more models etc.) by clicking the Duplicate Space (you will then need a paid GPU from HuggingFace). If you have a GPU, you can run the gradio demo locally (click the link to our repo below for more info). Finally, you can get a GPU for free from Google and run the demo in [a Google Colab.](https://ai.honu.io/red/musicgen-colab). See [github.com/facebookresearch/audiocraft](https://github.com/facebookresearch/audiocraft/blob/main/docs/MUSICGEN.md) for more details. All samples are generated with the `stereo-melody` model. """) demo.queue(max_size=8 * 4).launch(**launch_kwargs) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--listen", type=str, default="0.0.0.0" if "SPACE_ID" in os.environ else "127.0.0.1", help="IP to listen on for connections to Gradio", ) parser.add_argument( "--username", type=str, default="", help="Username for authentication" ) parser.add_argument( "--password", type=str, default="", help="Password for authentication" ) parser.add_argument( "--server_port", type=int, default=0, help="Port to run the server listener on", ) parser.add_argument("--inbrowser", action="store_true", help="Open in browser") parser.add_argument("--share", action="store_true", help="Share the gradio UI") args = parser.parse_args() launch_kwargs = {} launch_kwargs["server_name"] = args.listen if args.username and args.password: launch_kwargs["auth"] = (args.username, args.password) if args.server_port: launch_kwargs["server_port"] = args.server_port if args.inbrowser: launch_kwargs["inbrowser"] = args.inbrowser if args.share: launch_kwargs["share"] = args.share logging.basicConfig(level=logging.INFO, stream=sys.stderr) # Show the interface # if IS_BATCHED: # global USE_DIFFUSION # USE_DIFFUSION = False # ui_batched(launch_kwargs) # else: ui_full(launch_kwargs)