Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,641 Bytes
8866a87 a327689 8866a87 34d287c 8866a87 34d287c 8866a87 34d287c 8866a87 34d287c 8866a87 34d287c 8866a87 34d287c 8866a87 7c6db12 8866a87 34d287c 8866a87 34d287c 8866a87 34d287c 8866a87 34d287c 8866a87 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import os
import time
import random
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from torch.cuda.amp import autocast
import hydra
from omegaconf import DictConfig, OmegaConf
from hydra.utils import instantiate
from lightglue import LightGlue, SuperPoint, SIFT, ALIKED
import pycolmap
# from visdom import Visdom
from vggsfm.datasets.demo_loader import DemoLoader
from vggsfm.two_view_geo.estimate_preliminary import estimate_preliminary_cameras
try:
import poselib
from vggsfm.two_view_geo.estimate_preliminary import estimate_preliminary_cameras_poselib
print("Poselib is available")
except:
print("Poselib is not installed. Please disable use_poselib")
from vggsfm.utils.utils import (
set_seed_and_print,
farthest_point_sampling,
calculate_index_mappings,
switch_tensor_order,
)
def demo_fn(cfg):
OmegaConf.set_struct(cfg, False)
# Print configuration
print("Model Config:", OmegaConf.to_yaml(cfg))
torch.backends.cudnn.enabled = False
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.deterministic = True
# Set seed
seed_all_random_engines(cfg.seed)
# Model instantiation
model = instantiate(cfg.MODEL, _recursive_=False, cfg=cfg)
device = "cuda" if torch.cuda.is_available() else "cpu"
model = model.to(device)
# Prepare test dataset
test_dataset = DemoLoader(
SCENE_DIR=cfg.SCENE_DIR, img_size=cfg.img_size, normalize_cameras=False, load_gt=cfg.load_gt, cfg=cfg
)
# if cfg.resume_ckpt:
_VGGSFM_URL = "https://huggingface.co/facebook/VGGSfM/resolve/main/vggsfm_v2_0_0.bin"
# Reload model
checkpoint = torch.hub.load_state_dict_from_url(_VGGSFM_URL)
model.load_state_dict(checkpoint, strict=True)
print(f"Successfully resumed from {_VGGSFM_URL}")
sequence_list = test_dataset.sequence_list
for seq_name in sequence_list:
print("*" * 50 + f" Testing on Scene {seq_name} " + "*" * 50)
# Load the data
batch, image_paths = test_dataset.get_data(sequence_name=seq_name, return_path=True)
# Send to GPU
images = batch["image"].to(device)
crop_params = batch["crop_params"].to(device)
# Unsqueeze to have batch size = 1
images = images.unsqueeze(0)
crop_params = crop_params.unsqueeze(0)
batch_size = len(images)
with torch.no_grad():
# Run the model
assert cfg.mixed_precision in ("None", "bf16", "fp16")
if cfg.mixed_precision == "None":
dtype = torch.float32
elif cfg.mixed_precision == "bf16":
dtype = torch.bfloat16
elif cfg.mixed_precision == "fp16":
dtype = torch.float16
else:
raise NotImplementedError(f"dtype {cfg.mixed_precision} is not supported now")
predictions = run_one_scene(
model,
images,
crop_params=crop_params,
query_frame_num=cfg.query_frame_num,
image_paths=image_paths,
dtype=dtype,
cfg=cfg,
)
pred_cameras_PT3D = predictions["pred_cameras_PT3D"]
return predictions
def run_one_scene(model, images, crop_params=None, query_frame_num=3, image_paths=None, dtype=None, cfg=None):
"""
images have been normalized to the range [0, 1] instead of [0, 255]
"""
batch_num, frame_num, image_dim, height, width = images.shape
device = images.device
reshaped_image = images.reshape(batch_num * frame_num, image_dim, height, width)
predictions = {}
extra_dict = {}
camera_predictor = model.camera_predictor
track_predictor = model.track_predictor
triangulator = model.triangulator
# Find the query frames
# First use DINO to find the most common frame among all the input frames
# i.e., the one has highest (average) cosine similarity to all others
# Then use farthest_point_sampling to find the next ones
# The number of query frames is determined by query_frame_num
with autocast(dtype=dtype):
query_frame_indexes = find_query_frame_indexes(reshaped_image, camera_predictor, frame_num)
raw_image_paths = image_paths
image_paths = [os.path.basename(imgpath) for imgpath in image_paths]
if cfg.center_order:
# The code below switchs the first frame (frame 0) to the most common frame
center_frame_index = query_frame_indexes[0]
center_order = calculate_index_mappings(center_frame_index, frame_num, device=device)
images, crop_params = switch_tensor_order([images, crop_params], center_order, dim=1)
reshaped_image = switch_tensor_order([reshaped_image], center_order, dim=0)[0]
image_paths = [image_paths[i] for i in center_order.cpu().numpy().tolist()]
# Also update query_frame_indexes:
query_frame_indexes = [center_frame_index if x == 0 else x for x in query_frame_indexes]
query_frame_indexes[0] = 0
# only pick query_frame_num
query_frame_indexes = query_frame_indexes[:query_frame_num]
# Prepare image feature maps for tracker
fmaps_for_tracker = track_predictor.process_images_to_fmaps(images)
# Predict tracks
with autocast(dtype=dtype):
pred_track, pred_vis, pred_score = predict_tracks(
cfg.query_method,
cfg.max_query_pts,
track_predictor,
images,
fmaps_for_tracker,
query_frame_indexes,
frame_num,
device,
cfg,
)
if cfg.comple_nonvis:
pred_track, pred_vis, pred_score = comple_nonvis_frames(
track_predictor,
images,
fmaps_for_tracker,
frame_num,
device,
pred_track,
pred_vis,
pred_score,
200,
cfg=cfg,
)
torch.cuda.empty_cache()
# If necessary, force all the predictions at the padding areas as non-visible
if crop_params is not None:
boundaries = crop_params[:, :, -4:-2].abs().to(device)
boundaries = torch.cat([boundaries, reshaped_image.shape[-1] - boundaries], dim=-1)
hvis = torch.logical_and(
pred_track[..., 1] >= boundaries[:, :, 1:2], pred_track[..., 1] <= boundaries[:, :, 3:4]
)
wvis = torch.logical_and(
pred_track[..., 0] >= boundaries[:, :, 0:1], pred_track[..., 0] <= boundaries[:, :, 2:3]
)
force_vis = torch.logical_and(hvis, wvis)
pred_vis = pred_vis * force_vis.float()
# TODO: plot 2D matches
if cfg.use_poselib:
estimate_preliminary_cameras_fn = estimate_preliminary_cameras_poselib
else:
estimate_preliminary_cameras_fn = estimate_preliminary_cameras
# Estimate preliminary_cameras by recovering fundamental/essential/homography matrix from 2D matches
# By default, we use fundamental matrix estimation with 7p/8p+LORANSAC
# All the operations are batched and differentiable (if necessary)
# except when you enable use_poselib to save GPU memory
_, preliminary_dict = estimate_preliminary_cameras_fn(
pred_track,
pred_vis,
width,
height,
tracks_score=pred_score,
max_error=cfg.fmat_thres,
loopresidual=True,
# max_ransac_iters=cfg.max_ransac_iters,
)
pose_predictions = camera_predictor(reshaped_image, batch_size=batch_num)
pred_cameras = pose_predictions["pred_cameras"]
# Conduct Triangulation and Bundle Adjustment
(
BA_cameras_PT3D,
extrinsics_opencv,
intrinsics_opencv,
points3D,
points3D_rgb,
reconstruction,
valid_frame_mask,
) = triangulator(
pred_cameras,
pred_track,
pred_vis,
images,
preliminary_dict,
image_paths=image_paths,
crop_params=crop_params,
pred_score=pred_score,
fmat_thres=cfg.fmat_thres,
BA_iters=cfg.BA_iters,
max_reproj_error = cfg.max_reproj_error,
init_max_reproj_error=cfg.init_max_reproj_error,
cfg=cfg,
)
# if cfg.center_order:
# # NOTE we changed the image order previously, now we need to switch it back
# BA_cameras_PT3D = BA_cameras_PT3D[center_order]
# extrinsics_opencv = extrinsics_opencv[center_order]
# intrinsics_opencv = intrinsics_opencv[center_order]
if cfg.filter_invalid_frame:
raw_image_paths = np.array(raw_image_paths)[valid_frame_mask.cpu().numpy().tolist()].tolist()
images = images[0][valid_frame_mask]
predictions["pred_cameras_PT3D"] = BA_cameras_PT3D
predictions["extrinsics_opencv"] = extrinsics_opencv
predictions["intrinsics_opencv"] = intrinsics_opencv
predictions["points3D"] = points3D
predictions["points3D_rgb"] = points3D_rgb
predictions["reconstruction"] = reconstruction
predictions["images"] = images
predictions["raw_image_paths"] = raw_image_paths
return predictions
def predict_tracks(
query_method,
max_query_pts,
track_predictor,
images,
fmaps_for_tracker,
query_frame_indexes,
frame_num,
device,
cfg=None,
):
pred_track_list = []
pred_vis_list = []
pred_score_list = []
for query_index in query_frame_indexes:
print(f"Predicting tracks with query_index = {query_index}")
# Find query_points at the query frame
query_points = get_query_points(images[:, query_index], query_method, max_query_pts)
# Switch so that query_index frame stays at the first frame
# This largely simplifies the code structure of tracker
new_order = calculate_index_mappings(query_index, frame_num, device=device)
images_feed, fmaps_feed = switch_tensor_order([images, fmaps_for_tracker], new_order)
# Feed into track predictor
fine_pred_track, _, pred_vis, pred_score = track_predictor(images_feed, query_points, fmaps=fmaps_feed)
# Switch back the predictions
fine_pred_track, pred_vis, pred_score = switch_tensor_order([fine_pred_track, pred_vis, pred_score], new_order)
# Append predictions for different queries
pred_track_list.append(fine_pred_track)
pred_vis_list.append(pred_vis)
pred_score_list.append(pred_score)
pred_track = torch.cat(pred_track_list, dim=2)
pred_vis = torch.cat(pred_vis_list, dim=2)
pred_score = torch.cat(pred_score_list, dim=2)
return pred_track, pred_vis, pred_score
def comple_nonvis_frames(
track_predictor,
images,
fmaps_for_tracker,
frame_num,
device,
pred_track,
pred_vis,
pred_score,
min_vis=500,
cfg=None,
):
# if a frame has too few visible inlier, use it as a query
non_vis_frames = torch.nonzero((pred_vis.squeeze(0) > 0.05).sum(-1) < min_vis).squeeze(-1).tolist()
last_query = -1
while len(non_vis_frames) > 0:
print("Processing non visible frames")
print(non_vis_frames)
if non_vis_frames[0] == last_query:
print("The non vis frame still does not has enough 2D matches")
pred_track_comple, pred_vis_comple, pred_score_comple = predict_tracks(
"sp+sift+aliked",
cfg.max_query_pts // 2,
track_predictor,
images,
fmaps_for_tracker,
non_vis_frames,
frame_num,
device,
cfg,
)
# concat predictions
pred_track = torch.cat([pred_track, pred_track_comple], dim=2)
pred_vis = torch.cat([pred_vis, pred_vis_comple], dim=2)
pred_score = torch.cat([pred_score, pred_score_comple], dim=2)
break
non_vis_query_list = [non_vis_frames[0]]
last_query = non_vis_frames[0]
pred_track_comple, pred_vis_comple, pred_score_comple = predict_tracks(
cfg.query_method,
cfg.max_query_pts,
track_predictor,
images,
fmaps_for_tracker,
non_vis_query_list,
frame_num,
device,
cfg,
)
# concat predictions
pred_track = torch.cat([pred_track, pred_track_comple], dim=2)
pred_vis = torch.cat([pred_vis, pred_vis_comple], dim=2)
pred_score = torch.cat([pred_score, pred_score_comple], dim=2)
non_vis_frames = torch.nonzero((pred_vis.squeeze(0) > 0.05).sum(-1) < min_vis).squeeze(-1).tolist()
return pred_track, pred_vis, pred_score
def find_query_frame_indexes(reshaped_image, camera_predictor, query_frame_num, image_size=336):
# Downsample image to image_size x image_size
# because we found it is unnecessary to use high resolution
rgbs = F.interpolate(reshaped_image, (image_size, image_size), mode="bilinear", align_corners=True)
rgbs = camera_predictor._resnet_normalize_image(rgbs)
# Get the image features (patch level)
frame_feat = camera_predictor.backbone(rgbs, is_training=True)
frame_feat = frame_feat["x_norm_patchtokens"]
frame_feat_norm = F.normalize(frame_feat, p=2, dim=1)
# Compute the similiarty matrix
frame_feat_norm = frame_feat_norm.permute(1, 0, 2)
similarity_matrix = torch.bmm(frame_feat_norm, frame_feat_norm.transpose(-1, -2))
similarity_matrix = similarity_matrix.mean(dim=0)
distance_matrix = 100 - similarity_matrix.clone()
# Ignore self-pairing
similarity_matrix.fill_diagonal_(-100)
similarity_sum = similarity_matrix.sum(dim=1)
# Find the most common frame
most_common_frame_index = torch.argmax(similarity_sum).item()
# Conduct FPS sampling
# Starting from the most_common_frame_index,
# try to find the farthest frame,
# then the farthest to the last found frame
# (frames are not allowed to be found twice)
fps_idx = farthest_point_sampling(distance_matrix, query_frame_num, most_common_frame_index)
return fps_idx
def get_query_points(query_image, query_method, max_query_num=4096, det_thres=0.005):
# Run superpoint and sift on the target frame
# Feel free to modify for your own
methods = query_method.split("+")
pred_points = []
for method in methods:
if "sp" in method:
extractor = SuperPoint(max_num_keypoints=max_query_num, detection_threshold=det_thres).cuda().eval()
elif "sift" in method:
extractor = SIFT(max_num_keypoints=max_query_num).cuda().eval()
elif "aliked" in method:
extractor = ALIKED(max_num_keypoints=max_query_num, detection_threshold=det_thres).cuda().eval()
else:
raise NotImplementedError(f"query method {method} is not supprted now")
query_points = extractor.extract(query_image)["keypoints"]
pred_points.append(query_points)
query_points = torch.cat(pred_points, dim=1)
if query_points.shape[1] > max_query_num:
random_point_indices = torch.randperm(query_points.shape[1])[:max_query_num]
query_points = query_points[:, random_point_indices, :]
return query_points
def seed_all_random_engines(seed: int) -> None:
np.random.seed(seed)
torch.manual_seed(seed)
random.seed(seed)
|