File size: 8,782 Bytes
471bf0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
try:
    import os
    
    import trimesh
    import open3d as o3d

    import gradio as gr
    import numpy as np
    import matplotlib
    from scipy.spatial.transform import Rotation

    print("Successfully imported the packages for Gradio visualization")
except:
    print(
        f"Failed to import packages for Gradio visualization. Please disable gradio visualization"
    )


def visualize_by_gradio(glbfile):
    """
    Set up and launch a Gradio interface to visualize a GLB file.

    Args:
        glbfile (str): Path to the GLB file to be visualized.
    """

    def load_glb_file(glb_path):
        # Check if the file exists and return the path or error message
        if os.path.exists(glb_path):
            return glb_path, "3D Model Loaded Successfully"
        else:
            return None, "File not found"

    # Load the GLB file initially to check if it's valid
    initial_model, log_message = load_glb_file(glbfile)

    # Create the Gradio interface
    with gr.Blocks() as demo:
        gr.Markdown("# GLB File Viewer")

        # 3D Model viewer component
        model_viewer = gr.Model3D(
            label="3D Model Viewer", height=600, value=initial_model
        )

        # Textbox for log output
        log_output = gr.Textbox(label="Log", lines=2, value=log_message)

    # Launch the Gradio interface
    demo.launch(share=True)


def vggsfm_predictions_to_glb(predictions) -> trimesh.Scene:
    """
    Converts VGG SFM predictions to a 3D scene represented as a GLB.

    Args:
        predictions (dict): A dictionary containing model predictions.

    Returns:
        trimesh.Scene: A 3D scene object.
    """
    # Convert predictions to numpy arrays
    vertices_3d = predictions["points3D"].cpu().numpy()
    colors_rgb = (predictions["points3D_rgb"].cpu().numpy() * 255).astype(
        np.uint8
    )


    if True:
        pcd = o3d.geometry.PointCloud()
        pcd.points = o3d.utility.Vector3dVector(vertices_3d)
        pcd.colors = o3d.utility.Vector3dVector(colors_rgb)
        
        cl, ind = pcd.remove_statistical_outlier(nb_neighbors=20, std_ratio=1.0)
        filtered_pcd = pcd.select_by_index(ind)

        print(f"Filter out {len(vertices_3d) - len(filtered_pcd.points)} 3D points")
        vertices_3d = np.asarray(filtered_pcd.points)
        colors_rgb = np.asarray(filtered_pcd.colors).astype(np.uint8)

    

    camera_matrices = predictions["extrinsics_opencv"].cpu().numpy()

    # Calculate the 5th and 95th percentiles along each axis
    lower_percentile = np.percentile(vertices_3d, 5, axis=0)
    upper_percentile = np.percentile(vertices_3d, 95, axis=0)

    # Calculate the diagonal length of the percentile bounding box
    scene_scale = np.linalg.norm(upper_percentile - lower_percentile)

    colormap = matplotlib.colormaps.get_cmap("gist_rainbow")

    # Initialize a 3D scene
    scene_3d = trimesh.Scene()

    # Add point cloud data to the scene
    point_cloud_data = trimesh.PointCloud(
        vertices=vertices_3d, colors=colors_rgb
    )
    
    scene_3d.add_geometry(point_cloud_data)

    # Prepare 4x4 matrices for camera extrinsics
    num_cameras = len(camera_matrices)
    extrinsics_matrices = np.zeros((num_cameras, 4, 4))
    extrinsics_matrices[:, :3, :4] = camera_matrices
    extrinsics_matrices[:, 3, 3] = 1

    # Add camera models to the scene
    for i in range(num_cameras):
        world_to_camera = extrinsics_matrices[i]
        camera_to_world = np.linalg.inv(world_to_camera)
        rgba_color = colormap(i / num_cameras)
        current_color = tuple(int(255 * x) for x in rgba_color[:3])

        integrate_camera_into_scene(
            scene_3d, camera_to_world, current_color, scene_scale
        )

    # Align scene to the observation of the first camera
    scene_3d = apply_scene_alignment(scene_3d, extrinsics_matrices)

    return scene_3d


def apply_scene_alignment(
    scene_3d: trimesh.Scene, extrinsics_matrices: np.ndarray
) -> trimesh.Scene:
    """
    Aligns the 3D scene based on the extrinsics of the first camera.

    Args:
        scene_3d (trimesh.Scene): The 3D scene to be aligned.
        extrinsics_matrices (np.ndarray): Camera extrinsic matrices.

    Returns:
        trimesh.Scene: Aligned 3D scene.
    """
    # Set transformations for scene alignment
    opengl_conversion_matrix = get_opengl_conversion_matrix()

    # Rotation matrix for alignment (180 degrees around the y-axis)
    align_rotation = np.eye(4)
    align_rotation[:3, :3] = Rotation.from_euler(
        "y", 180, degrees=True
    ).as_matrix()

    # Apply transformation
    initial_transformation = (
        np.linalg.inv(extrinsics_matrices[0])
        @ opengl_conversion_matrix
        @ align_rotation
    )
    scene_3d.apply_transform(initial_transformation)
    return scene_3d


def integrate_camera_into_scene(
    scene: trimesh.Scene,
    transform: np.ndarray,
    face_colors: tuple,
    scene_scale: float,
):
    """
    Integrates a fake camera mesh into the 3D scene.

    Args:
        scene (trimesh.Scene): The 3D scene to add the camera model.
        transform (np.ndarray): Transformation matrix for camera positioning.
        face_colors (tuple): Color of the camera face.
        scene_scale (float): Scale of the scene.
    """

    cam_width = scene_scale * 0.05
    cam_height = scene_scale * 0.1

    # Create cone shape for camera
    rot_45_degree = np.eye(4)
    rot_45_degree[:3, :3] = Rotation.from_euler(
        "z", 45, degrees=True
    ).as_matrix()
    rot_45_degree[2, 3] = -cam_height

    opengl_transform = get_opengl_conversion_matrix()
    # Combine transformations
    complete_transform = transform @ opengl_transform @ rot_45_degree
    camera_cone_shape = trimesh.creation.cone(cam_width, cam_height, sections=4)

    # Generate mesh for the camera
    slight_rotation = np.eye(4)
    slight_rotation[:3, :3] = Rotation.from_euler(
        "z", 2, degrees=True
    ).as_matrix()

    vertices_combined = np.concatenate(
        [
            camera_cone_shape.vertices,
            0.95 * camera_cone_shape.vertices,
            transform_points(slight_rotation, camera_cone_shape.vertices),
        ]
    )
    vertices_transformed = transform_points(
        complete_transform, vertices_combined
    )

    mesh_faces = compute_camera_faces(camera_cone_shape)

    # Add the camera mesh to the scene
    camera_mesh = trimesh.Trimesh(
        vertices=vertices_transformed, faces=mesh_faces
    )
    camera_mesh.visual.face_colors[:, :3] = face_colors
    scene.add_geometry(camera_mesh)


def compute_camera_faces(cone_shape: trimesh.Trimesh) -> np.ndarray:
    """
    Computes the faces for the camera mesh.

    Args:
        cone_shape (trimesh.Trimesh): The shape of the camera cone.

    Returns:
        np.ndarray: Array of faces for the camera mesh.
    """
    # Create pseudo cameras
    faces_list = []
    num_vertices_cone = len(cone_shape.vertices)

    for face in cone_shape.faces:
        if 0 in face:
            continue
        v1, v2, v3 = face
        v1_offset, v2_offset, v3_offset = face + num_vertices_cone
        v1_offset_2, v2_offset_2, v3_offset_2 = face + 2 * num_vertices_cone

        faces_list.extend(
            [
                (v1, v2, v2_offset),
                (v1, v1_offset, v3),
                (v3_offset, v2, v3),
                (v1, v2, v2_offset_2),
                (v1, v1_offset_2, v3),
                (v3_offset_2, v2, v3),
            ]
        )

    faces_list += [(v3, v2, v1) for v1, v2, v3 in faces_list]
    return np.array(faces_list)


def transform_points(
    transformation: np.ndarray, points: np.ndarray, dim: int = None
) -> np.ndarray:
    """
    Applies a 4x4 transformation to a set of points.

    Args:
        transformation (np.ndarray): Transformation matrix.
        points (np.ndarray): Points to be transformed.
        dim (int, optional): Dimension for reshaping the result.

    Returns:
        np.ndarray: Transformed points.
    """
    points = np.asarray(points)
    initial_shape = points.shape[:-1]
    dim = dim or points.shape[-1]

    # Apply transformation
    transformation = transformation.swapaxes(
        -1, -2
    )  # Transpose the transformation matrix
    points = points @ transformation[..., :-1, :] + transformation[..., -1:, :]

    # Reshape the result
    result = points[..., :dim].reshape(*initial_shape, dim)
    return result


def get_opengl_conversion_matrix() -> np.ndarray:
    """
    Constructs and returns the OpenGL conversion matrix.

    Returns:
        numpy.ndarray: A 4x4 OpenGL conversion matrix.
    """
    # Create an identity matrix
    matrix = np.identity(4)

    # Flip the y and z axes
    matrix[1, 1] = -1
    matrix[2, 2] = -1

    return matrix