Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,782 Bytes
471bf0d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
try:
import os
import trimesh
import open3d as o3d
import gradio as gr
import numpy as np
import matplotlib
from scipy.spatial.transform import Rotation
print("Successfully imported the packages for Gradio visualization")
except:
print(
f"Failed to import packages for Gradio visualization. Please disable gradio visualization"
)
def visualize_by_gradio(glbfile):
"""
Set up and launch a Gradio interface to visualize a GLB file.
Args:
glbfile (str): Path to the GLB file to be visualized.
"""
def load_glb_file(glb_path):
# Check if the file exists and return the path or error message
if os.path.exists(glb_path):
return glb_path, "3D Model Loaded Successfully"
else:
return None, "File not found"
# Load the GLB file initially to check if it's valid
initial_model, log_message = load_glb_file(glbfile)
# Create the Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# GLB File Viewer")
# 3D Model viewer component
model_viewer = gr.Model3D(
label="3D Model Viewer", height=600, value=initial_model
)
# Textbox for log output
log_output = gr.Textbox(label="Log", lines=2, value=log_message)
# Launch the Gradio interface
demo.launch(share=True)
def vggsfm_predictions_to_glb(predictions) -> trimesh.Scene:
"""
Converts VGG SFM predictions to a 3D scene represented as a GLB.
Args:
predictions (dict): A dictionary containing model predictions.
Returns:
trimesh.Scene: A 3D scene object.
"""
# Convert predictions to numpy arrays
vertices_3d = predictions["points3D"].cpu().numpy()
colors_rgb = (predictions["points3D_rgb"].cpu().numpy() * 255).astype(
np.uint8
)
if True:
pcd = o3d.geometry.PointCloud()
pcd.points = o3d.utility.Vector3dVector(vertices_3d)
pcd.colors = o3d.utility.Vector3dVector(colors_rgb)
cl, ind = pcd.remove_statistical_outlier(nb_neighbors=20, std_ratio=1.0)
filtered_pcd = pcd.select_by_index(ind)
print(f"Filter out {len(vertices_3d) - len(filtered_pcd.points)} 3D points")
vertices_3d = np.asarray(filtered_pcd.points)
colors_rgb = np.asarray(filtered_pcd.colors).astype(np.uint8)
camera_matrices = predictions["extrinsics_opencv"].cpu().numpy()
# Calculate the 5th and 95th percentiles along each axis
lower_percentile = np.percentile(vertices_3d, 5, axis=0)
upper_percentile = np.percentile(vertices_3d, 95, axis=0)
# Calculate the diagonal length of the percentile bounding box
scene_scale = np.linalg.norm(upper_percentile - lower_percentile)
colormap = matplotlib.colormaps.get_cmap("gist_rainbow")
# Initialize a 3D scene
scene_3d = trimesh.Scene()
# Add point cloud data to the scene
point_cloud_data = trimesh.PointCloud(
vertices=vertices_3d, colors=colors_rgb
)
scene_3d.add_geometry(point_cloud_data)
# Prepare 4x4 matrices for camera extrinsics
num_cameras = len(camera_matrices)
extrinsics_matrices = np.zeros((num_cameras, 4, 4))
extrinsics_matrices[:, :3, :4] = camera_matrices
extrinsics_matrices[:, 3, 3] = 1
# Add camera models to the scene
for i in range(num_cameras):
world_to_camera = extrinsics_matrices[i]
camera_to_world = np.linalg.inv(world_to_camera)
rgba_color = colormap(i / num_cameras)
current_color = tuple(int(255 * x) for x in rgba_color[:3])
integrate_camera_into_scene(
scene_3d, camera_to_world, current_color, scene_scale
)
# Align scene to the observation of the first camera
scene_3d = apply_scene_alignment(scene_3d, extrinsics_matrices)
return scene_3d
def apply_scene_alignment(
scene_3d: trimesh.Scene, extrinsics_matrices: np.ndarray
) -> trimesh.Scene:
"""
Aligns the 3D scene based on the extrinsics of the first camera.
Args:
scene_3d (trimesh.Scene): The 3D scene to be aligned.
extrinsics_matrices (np.ndarray): Camera extrinsic matrices.
Returns:
trimesh.Scene: Aligned 3D scene.
"""
# Set transformations for scene alignment
opengl_conversion_matrix = get_opengl_conversion_matrix()
# Rotation matrix for alignment (180 degrees around the y-axis)
align_rotation = np.eye(4)
align_rotation[:3, :3] = Rotation.from_euler(
"y", 180, degrees=True
).as_matrix()
# Apply transformation
initial_transformation = (
np.linalg.inv(extrinsics_matrices[0])
@ opengl_conversion_matrix
@ align_rotation
)
scene_3d.apply_transform(initial_transformation)
return scene_3d
def integrate_camera_into_scene(
scene: trimesh.Scene,
transform: np.ndarray,
face_colors: tuple,
scene_scale: float,
):
"""
Integrates a fake camera mesh into the 3D scene.
Args:
scene (trimesh.Scene): The 3D scene to add the camera model.
transform (np.ndarray): Transformation matrix for camera positioning.
face_colors (tuple): Color of the camera face.
scene_scale (float): Scale of the scene.
"""
cam_width = scene_scale * 0.05
cam_height = scene_scale * 0.1
# Create cone shape for camera
rot_45_degree = np.eye(4)
rot_45_degree[:3, :3] = Rotation.from_euler(
"z", 45, degrees=True
).as_matrix()
rot_45_degree[2, 3] = -cam_height
opengl_transform = get_opengl_conversion_matrix()
# Combine transformations
complete_transform = transform @ opengl_transform @ rot_45_degree
camera_cone_shape = trimesh.creation.cone(cam_width, cam_height, sections=4)
# Generate mesh for the camera
slight_rotation = np.eye(4)
slight_rotation[:3, :3] = Rotation.from_euler(
"z", 2, degrees=True
).as_matrix()
vertices_combined = np.concatenate(
[
camera_cone_shape.vertices,
0.95 * camera_cone_shape.vertices,
transform_points(slight_rotation, camera_cone_shape.vertices),
]
)
vertices_transformed = transform_points(
complete_transform, vertices_combined
)
mesh_faces = compute_camera_faces(camera_cone_shape)
# Add the camera mesh to the scene
camera_mesh = trimesh.Trimesh(
vertices=vertices_transformed, faces=mesh_faces
)
camera_mesh.visual.face_colors[:, :3] = face_colors
scene.add_geometry(camera_mesh)
def compute_camera_faces(cone_shape: trimesh.Trimesh) -> np.ndarray:
"""
Computes the faces for the camera mesh.
Args:
cone_shape (trimesh.Trimesh): The shape of the camera cone.
Returns:
np.ndarray: Array of faces for the camera mesh.
"""
# Create pseudo cameras
faces_list = []
num_vertices_cone = len(cone_shape.vertices)
for face in cone_shape.faces:
if 0 in face:
continue
v1, v2, v3 = face
v1_offset, v2_offset, v3_offset = face + num_vertices_cone
v1_offset_2, v2_offset_2, v3_offset_2 = face + 2 * num_vertices_cone
faces_list.extend(
[
(v1, v2, v2_offset),
(v1, v1_offset, v3),
(v3_offset, v2, v3),
(v1, v2, v2_offset_2),
(v1, v1_offset_2, v3),
(v3_offset_2, v2, v3),
]
)
faces_list += [(v3, v2, v1) for v1, v2, v3 in faces_list]
return np.array(faces_list)
def transform_points(
transformation: np.ndarray, points: np.ndarray, dim: int = None
) -> np.ndarray:
"""
Applies a 4x4 transformation to a set of points.
Args:
transformation (np.ndarray): Transformation matrix.
points (np.ndarray): Points to be transformed.
dim (int, optional): Dimension for reshaping the result.
Returns:
np.ndarray: Transformed points.
"""
points = np.asarray(points)
initial_shape = points.shape[:-1]
dim = dim or points.shape[-1]
# Apply transformation
transformation = transformation.swapaxes(
-1, -2
) # Transpose the transformation matrix
points = points @ transformation[..., :-1, :] + transformation[..., -1:, :]
# Reshape the result
result = points[..., :dim].reshape(*initial_shape, dim)
return result
def get_opengl_conversion_matrix() -> np.ndarray:
"""
Constructs and returns the OpenGL conversion matrix.
Returns:
numpy.ndarray: A 4x4 OpenGL conversion matrix.
"""
# Create an identity matrix
matrix = np.identity(4)
# Flip the y and z axes
matrix[1, 1] = -1
matrix[2, 2] = -1
return matrix |