File size: 12,972 Bytes
7ca9b42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
import sys
thismodule = sys.modules[__name__]

import torch
import torch.nn as nn
import torch.nn.functional as F
import random
import matplotlib.pyplot as plt
import numpy as np
torch.manual_seed(123)


def get_autoencoder(config):
    ae_cls = getattr(thismodule, config.autoencoder.cls)
    return ae_cls(config.autoencoder)


class ConvEncoder(nn.Module):

    @classmethod
    def build_from_config(cls, config):
        conv_pool = None if config.conv_pool is None else getattr(nn, config.conv_pool)
        encoder = cls(config.channels, config.padding, config.kernel_size, config.conv_stride, conv_pool)
        return encoder

    def __init__(self, channels, padding=3, kernel_size=8, conv_stride=2, conv_pool=None):
        super(ConvEncoder, self).__init__()

        self.in_channels = channels[0]

        model = []
        acti = nn.LeakyReLU(0.2)

        nr_layer = len(channels) - 1

        for i in range(nr_layer):
            if conv_pool is None:
                model.append(nn.ReflectionPad1d(padding))
                model.append(nn.Conv1d(channels[i], channels[i+1], kernel_size=kernel_size, stride=conv_stride))
                model.append(acti)
            else:
                model.append(nn.ReflectionPad1d(padding))
                model.append(nn.Conv1d(channels[i], channels[i+1], kernel_size=kernel_size, stride=conv_stride))
                model.append(acti)
                model.append(conv_pool(kernel_size=2, stride=2))

        self.model = nn.Sequential(*model)

    def forward(self, x):
        x = x[:, :self.in_channels, :]
        x = self.model(x)
        return x


class ConvDecoder(nn.Module):

    @classmethod
    def build_from_config(cls, config):
        decoder = cls(config.channels, config.kernel_size)
        return decoder

    def __init__(self, channels, kernel_size=7):
        super(ConvDecoder, self).__init__()

        model = []
        pad = (kernel_size - 1) // 2
        acti = nn.LeakyReLU(0.2)

        for i in range(len(channels) - 1):
            model.append(nn.Upsample(scale_factor=2, mode='nearest'))
            model.append(nn.ReflectionPad1d(pad))
            model.append(nn.Conv1d(channels[i], channels[i + 1],
                                            kernel_size=kernel_size, stride=1))
            if i == 0 or i == 1:
                model.append(nn.Dropout(p=0.2))
            if not i == len(channels) - 2:
                model.append(acti)          # whether to add tanh a last?
                #model.append(nn.Dropout(p=0.2))

        self.model = nn.Sequential(*model)

    def forward(self, x):
        return self.model(x)


class Discriminator(nn.Module):

    def __init__(self, config):
        super(Discriminator, self).__init__()
        self.gan_type = config.gan_type
        encoder_cls = getattr(thismodule, config.encoder_cls)
        self.encoder = encoder_cls.build_from_config(config)
        self.linear = nn.Linear(config.channels[-1], 1)

    def forward(self, seqs):

        code_seq = self.encoder(seqs)
        logits = self.linear(code_seq.permute(0, 2, 1))
        return logits

    def calc_dis_loss(self, x_gen, x_real):

        fake_logits = self.forward(x_gen)
        real_logits = self.forward(x_real)

        if self.gan_type == 'lsgan':
            loss = torch.mean((fake_logits - 0) ** 2) + torch.mean((real_logits - 1) ** 2)
        elif self.gan_type == 'nsgan':
            all0 = torch.zeros_like(fake_logits, requires_grad=False)
            all1 = torch.ones_like(real_logits, requires_grad=False)
            loss = torch.mean(F.binary_cross_entropy(F.sigmoid(fake_logits), all0) +
                              F.binary_cross_entropy(F.sigmoid(real_logits), all1))
        else:
            raise NotImplementedError

        return loss

    def calc_gen_loss(self, x_gen):

        logits = self.forward(x_gen)
        if self.gan_type == 'lsgan':
            loss = torch.mean((logits - 1) ** 2)
        elif self.gan_type == 'nsgan':
            all1 = torch.ones_like(logits, requires_grad=False)
            loss = torch.mean(F.binary_cross_entropy(F.sigmoid(logits), all1))
        else:
            raise NotImplementedError

        return loss


class Autoencoder3f(nn.Module):

    def __init__(self, config):
        super(Autoencoder3f, self).__init__()

        assert config.motion_encoder.channels[-1] + config.body_encoder.channels[-1] + \
               config.view_encoder.channels[-1] == config.decoder.channels[0]

        self.n_joints = config.decoder.channels[-1] // 3
        self.body_reference = config.body_reference

        motion_cls = getattr(thismodule, config.motion_encoder.cls)
        body_cls = getattr(thismodule, config.body_encoder.cls)
        view_cls = getattr(thismodule, config.view_encoder.cls)

        self.motion_encoder = motion_cls.build_from_config(config.motion_encoder)
        self.body_encoder = body_cls.build_from_config(config.body_encoder)
        self.view_encoder = view_cls.build_from_config(config.view_encoder)
        self.decoder = ConvDecoder.build_from_config(config.decoder)

        self.body_pool = getattr(F, config.body_encoder.global_pool) if config.body_encoder.global_pool is not None else None
        self.view_pool = getattr(F, config.view_encoder.global_pool) if config.view_encoder.global_pool is not None else None

    def forward(self, seqs):
        return self.reconstruct(seqs)

    def encode_motion(self, seqs):
        motion_code_seq = self.motion_encoder(seqs)
        return motion_code_seq

    def encode_body(self, seqs):
        body_code_seq = self.body_encoder(seqs)
        kernel_size = body_code_seq.size(-1)
        body_code = self.body_pool(body_code_seq, kernel_size)  if self.body_pool is not None else body_code_seq
        return body_code, body_code_seq

    def encode_view(self, seqs):
        view_code_seq = self.view_encoder(seqs)
        kernel_size = view_code_seq.size(-1)
        view_code = self.view_pool(view_code_seq, kernel_size)  if self.view_pool is not None else view_code_seq
        return view_code, view_code_seq

    def decode(self, motion_code, body_code, view_code):
        if body_code.size(-1) == 1:
            body_code = body_code.repeat(1, 1, motion_code.shape[-1])
        if view_code.size(-1) == 1:
            view_code = view_code.repeat(1, 1, motion_code.shape[-1])
        complete_code = torch.cat([motion_code, body_code, view_code], dim=1)
        out = self.decoder(complete_code)
        return out

    def cross3d(self, x_a, x_b, x_c):
        motion_a = self.encode_motion(x_a)
        body_b, _ = self.encode_body(x_b)
        view_c, _ = self.encode_view(x_c)
        out = self.decode(motion_a, body_b, view_c)
        return out

    def cross2d(self, x_a, x_b, x_c):
        motion_a = self.encode_motion(x_a)
        body_b, _ = self.encode_body(x_b)
        view_c, _ = self.encode_view(x_c)
        out = self.decode(motion_a, body_b, view_c)
        batch_size, channels, seq_len = out.size()
        n_joints = channels // 3
        out = out.view(batch_size, n_joints, 3, seq_len)
        out = out[:, :, [0, 2], :]
        out = out.view(batch_size, n_joints * 2, seq_len)
        return out
    
    def cross2d_adv(self, x_a, x_b, x_c):
        x_a.cpu()
        x_a_shape = x_a.shape
        print(x_a.shape)
        #motion_a_org = self.encode_motion(x_a)
        print(x_a)


        # The heatmap image is saved as 'tensor_heatmap.png' in the current directory

        # for i in range(0,119):
        #     x_a[0][11][i]+=1

        #x_a[0][7][60]+=0.01

        #motion_a = self.encode_motion(x_a)
        # print(motion_a.shape)
        # print(motion_a[0][0]-motion_a_org[0][0])
        # res = motion_a[0] - motion_a_org[0]
        # res = res.cpu().detach().numpy()
        # # Code for plotting the heatmap
        # plt.figure(figsize=(15, 10))
        # plt.imshow(res, cmap='hot', interpolation='nearest')
        # plt.colorbar()
        # plt.title('Heatmap of the Tensor')

        # # Save the heatmap to a local file
        # plt.savefig('/home/fazhong/studio/transmomo.pytorch/tensor_heatmap2.png')
        # plt.close()

        initial_motion_a = self.encode_motion(x_a)  # 计算初始的motion_a

        # 定义一个函数来计算motion的变化量
        def motion_change(motion_a, initial_motion_a):
            return (motion_a - initial_motion_a).norm()

        # 设置初始的最大变化量为0
        max_change = 0

        # 扰动次数,可以根据需要更改
        num_perturbations = 10000
        init_a = x_a.clone()
        for _ in range(num_perturbations):
            # 复制x_a以避免在原始数据上修改
            x_a_perturbed = x_a.clone().cpu()

            # 选择要扰动的随机点
            batch_idx, seq_idx, feature_idx = (torch.randint(0, x_a.size(0), (1,)),
                                            torch.randint(0, x_a.size(1), (1,)),
                                            torch.randint(0, x_a.size(2), (1,)))

            # 在选定点上加上扰动
            x_a_perturbed[batch_idx, seq_idx, feature_idx] += 10 * torch.randn(1)

            # 计算扰动后的motion_a
            perturbed_motion_a = self.encode_motion(x_a_perturbed.to('cuda:0'))

            # 计算变化量
            change = motion_change(perturbed_motion_a, initial_motion_a)

            # 如果变化量大于之前保存的最大变化量,则更新x_a和最大变化量
            if change > max_change:
                x_a = x_a_perturbed
                max_change = change

        # 最后,x_a将是导致最大motion_a变化的扰动版本
        # max_change是这个变化量
        # print(max_change)
        # print(max_change.shape)

        print(x_a_perturbed - init_a.cpu())
        motion_a = self.encode_motion(x_a_perturbed.to('cuda:0'))
        # motion_a = self.encode_motion(x_a.to('cuda:0'))
        body_b, _ = self.encode_body(x_b)
        view_c, _ = self.encode_view(x_c)

        out = self.decode(motion_a, body_b, view_c)
        batch_size, channels, seq_len = out.size()
        n_joints = channels // 3
        out = out.view(batch_size, n_joints, 3, seq_len)
        out = out[:, :, [0, 2], :]
        out = out.view(batch_size, n_joints * 2, seq_len)
        return out
    
    def cross2d_one(self, x_a):
        motion_a = self.encode_motion(x_a)
        body_b, _ = self.encode_body(x_a)
        view_c, _ = self.encode_view(x_a)
        
        out = self.decode(motion_a, body_b, view_c)
        batch_size, channels, seq_len = out.size()
        n_joints = channels // 3
        out = out.view(batch_size, n_joints, 3, seq_len)
        out = out[:, :, [0, 2], :]
        out = out.view(batch_size, n_joints * 2, seq_len)
        return out

    def adv_cross(self,x_a):
        motion_a = self.encode_motion(x_a)
        body_b, _ = self.encode_body(x_a)
        view_c, _ = self.encode_view(x_a)
        return motion_a

    def reconstruct3d(self, x):
        motion_code = self.encode_motion(x)
        body_code, _ = self.encode_body(x)
        view_code, _ = self.encode_view(x)
        out = self.decode(motion_code, body_code, view_code)
        return out

    def reconstruct2d(self, x):
        motion_code = self.encode_motion(x)
        body_code, _ = self.encode_body(x)
        view_code, _ = self.encode_view(x)
        out = self.decode(motion_code, body_code, view_code)
        batch_size, channels, seq_len = out.size()
        n_joints = channels // 3
        out = out.view(batch_size, n_joints, 3, seq_len)
        out = out[:, :, [0, 2], :]
        out = out.view(batch_size, n_joints * 2, seq_len)
        return out

    def interpolate(self, x_a, x_b, N):

        step_size = 1. / (N-1)
        batch_size, _, seq_len = x_a.size()

        motion_a = self.encode_motion(x_a)
        body_a, body_a_seq = self.encode_body(x_a)
        view_a, view_a_seq = self.encode_view(x_a)

        motion_b = self.encode_motion(x_b)
        body_b, body_b_seq = self.encode_body(x_b)
        view_b, view_b_seq = self.encode_view(x_b)

        batch_out = torch.zeros([batch_size, N, N, 2 * self.n_joints, seq_len])

        for i in range(N):
            motion_weight = i * step_size
            for j in range(N):
                body_weight = j * step_size
                motion = (1. - motion_weight) * motion_a + motion_weight * motion_b
                body = (1. - body_weight) * body_a + body_weight * body_b
                view = (1. - body_weight) * view_a + body_weight * view_b
                out = self.decode(motion, body, view)
                batch_size, channels, seq_len = out.size()
                n_joints = channels // 3
                out = out.view(batch_size, n_joints, 3, seq_len)
                out = out[:, :, [0, 2], :]
                out = out.view(batch_size, n_joints * 2, seq_len)
                batch_out[:, i, j, :, :] = out

        return batch_out