File size: 12,972 Bytes
7ca9b42 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 |
import sys
thismodule = sys.modules[__name__]
import torch
import torch.nn as nn
import torch.nn.functional as F
import random
import matplotlib.pyplot as plt
import numpy as np
torch.manual_seed(123)
def get_autoencoder(config):
ae_cls = getattr(thismodule, config.autoencoder.cls)
return ae_cls(config.autoencoder)
class ConvEncoder(nn.Module):
@classmethod
def build_from_config(cls, config):
conv_pool = None if config.conv_pool is None else getattr(nn, config.conv_pool)
encoder = cls(config.channels, config.padding, config.kernel_size, config.conv_stride, conv_pool)
return encoder
def __init__(self, channels, padding=3, kernel_size=8, conv_stride=2, conv_pool=None):
super(ConvEncoder, self).__init__()
self.in_channels = channels[0]
model = []
acti = nn.LeakyReLU(0.2)
nr_layer = len(channels) - 1
for i in range(nr_layer):
if conv_pool is None:
model.append(nn.ReflectionPad1d(padding))
model.append(nn.Conv1d(channels[i], channels[i+1], kernel_size=kernel_size, stride=conv_stride))
model.append(acti)
else:
model.append(nn.ReflectionPad1d(padding))
model.append(nn.Conv1d(channels[i], channels[i+1], kernel_size=kernel_size, stride=conv_stride))
model.append(acti)
model.append(conv_pool(kernel_size=2, stride=2))
self.model = nn.Sequential(*model)
def forward(self, x):
x = x[:, :self.in_channels, :]
x = self.model(x)
return x
class ConvDecoder(nn.Module):
@classmethod
def build_from_config(cls, config):
decoder = cls(config.channels, config.kernel_size)
return decoder
def __init__(self, channels, kernel_size=7):
super(ConvDecoder, self).__init__()
model = []
pad = (kernel_size - 1) // 2
acti = nn.LeakyReLU(0.2)
for i in range(len(channels) - 1):
model.append(nn.Upsample(scale_factor=2, mode='nearest'))
model.append(nn.ReflectionPad1d(pad))
model.append(nn.Conv1d(channels[i], channels[i + 1],
kernel_size=kernel_size, stride=1))
if i == 0 or i == 1:
model.append(nn.Dropout(p=0.2))
if not i == len(channels) - 2:
model.append(acti) # whether to add tanh a last?
#model.append(nn.Dropout(p=0.2))
self.model = nn.Sequential(*model)
def forward(self, x):
return self.model(x)
class Discriminator(nn.Module):
def __init__(self, config):
super(Discriminator, self).__init__()
self.gan_type = config.gan_type
encoder_cls = getattr(thismodule, config.encoder_cls)
self.encoder = encoder_cls.build_from_config(config)
self.linear = nn.Linear(config.channels[-1], 1)
def forward(self, seqs):
code_seq = self.encoder(seqs)
logits = self.linear(code_seq.permute(0, 2, 1))
return logits
def calc_dis_loss(self, x_gen, x_real):
fake_logits = self.forward(x_gen)
real_logits = self.forward(x_real)
if self.gan_type == 'lsgan':
loss = torch.mean((fake_logits - 0) ** 2) + torch.mean((real_logits - 1) ** 2)
elif self.gan_type == 'nsgan':
all0 = torch.zeros_like(fake_logits, requires_grad=False)
all1 = torch.ones_like(real_logits, requires_grad=False)
loss = torch.mean(F.binary_cross_entropy(F.sigmoid(fake_logits), all0) +
F.binary_cross_entropy(F.sigmoid(real_logits), all1))
else:
raise NotImplementedError
return loss
def calc_gen_loss(self, x_gen):
logits = self.forward(x_gen)
if self.gan_type == 'lsgan':
loss = torch.mean((logits - 1) ** 2)
elif self.gan_type == 'nsgan':
all1 = torch.ones_like(logits, requires_grad=False)
loss = torch.mean(F.binary_cross_entropy(F.sigmoid(logits), all1))
else:
raise NotImplementedError
return loss
class Autoencoder3f(nn.Module):
def __init__(self, config):
super(Autoencoder3f, self).__init__()
assert config.motion_encoder.channels[-1] + config.body_encoder.channels[-1] + \
config.view_encoder.channels[-1] == config.decoder.channels[0]
self.n_joints = config.decoder.channels[-1] // 3
self.body_reference = config.body_reference
motion_cls = getattr(thismodule, config.motion_encoder.cls)
body_cls = getattr(thismodule, config.body_encoder.cls)
view_cls = getattr(thismodule, config.view_encoder.cls)
self.motion_encoder = motion_cls.build_from_config(config.motion_encoder)
self.body_encoder = body_cls.build_from_config(config.body_encoder)
self.view_encoder = view_cls.build_from_config(config.view_encoder)
self.decoder = ConvDecoder.build_from_config(config.decoder)
self.body_pool = getattr(F, config.body_encoder.global_pool) if config.body_encoder.global_pool is not None else None
self.view_pool = getattr(F, config.view_encoder.global_pool) if config.view_encoder.global_pool is not None else None
def forward(self, seqs):
return self.reconstruct(seqs)
def encode_motion(self, seqs):
motion_code_seq = self.motion_encoder(seqs)
return motion_code_seq
def encode_body(self, seqs):
body_code_seq = self.body_encoder(seqs)
kernel_size = body_code_seq.size(-1)
body_code = self.body_pool(body_code_seq, kernel_size) if self.body_pool is not None else body_code_seq
return body_code, body_code_seq
def encode_view(self, seqs):
view_code_seq = self.view_encoder(seqs)
kernel_size = view_code_seq.size(-1)
view_code = self.view_pool(view_code_seq, kernel_size) if self.view_pool is not None else view_code_seq
return view_code, view_code_seq
def decode(self, motion_code, body_code, view_code):
if body_code.size(-1) == 1:
body_code = body_code.repeat(1, 1, motion_code.shape[-1])
if view_code.size(-1) == 1:
view_code = view_code.repeat(1, 1, motion_code.shape[-1])
complete_code = torch.cat([motion_code, body_code, view_code], dim=1)
out = self.decoder(complete_code)
return out
def cross3d(self, x_a, x_b, x_c):
motion_a = self.encode_motion(x_a)
body_b, _ = self.encode_body(x_b)
view_c, _ = self.encode_view(x_c)
out = self.decode(motion_a, body_b, view_c)
return out
def cross2d(self, x_a, x_b, x_c):
motion_a = self.encode_motion(x_a)
body_b, _ = self.encode_body(x_b)
view_c, _ = self.encode_view(x_c)
out = self.decode(motion_a, body_b, view_c)
batch_size, channels, seq_len = out.size()
n_joints = channels // 3
out = out.view(batch_size, n_joints, 3, seq_len)
out = out[:, :, [0, 2], :]
out = out.view(batch_size, n_joints * 2, seq_len)
return out
def cross2d_adv(self, x_a, x_b, x_c):
x_a.cpu()
x_a_shape = x_a.shape
print(x_a.shape)
#motion_a_org = self.encode_motion(x_a)
print(x_a)
# The heatmap image is saved as 'tensor_heatmap.png' in the current directory
# for i in range(0,119):
# x_a[0][11][i]+=1
#x_a[0][7][60]+=0.01
#motion_a = self.encode_motion(x_a)
# print(motion_a.shape)
# print(motion_a[0][0]-motion_a_org[0][0])
# res = motion_a[0] - motion_a_org[0]
# res = res.cpu().detach().numpy()
# # Code for plotting the heatmap
# plt.figure(figsize=(15, 10))
# plt.imshow(res, cmap='hot', interpolation='nearest')
# plt.colorbar()
# plt.title('Heatmap of the Tensor')
# # Save the heatmap to a local file
# plt.savefig('/home/fazhong/studio/transmomo.pytorch/tensor_heatmap2.png')
# plt.close()
initial_motion_a = self.encode_motion(x_a) # 计算初始的motion_a
# 定义一个函数来计算motion的变化量
def motion_change(motion_a, initial_motion_a):
return (motion_a - initial_motion_a).norm()
# 设置初始的最大变化量为0
max_change = 0
# 扰动次数,可以根据需要更改
num_perturbations = 10000
init_a = x_a.clone()
for _ in range(num_perturbations):
# 复制x_a以避免在原始数据上修改
x_a_perturbed = x_a.clone().cpu()
# 选择要扰动的随机点
batch_idx, seq_idx, feature_idx = (torch.randint(0, x_a.size(0), (1,)),
torch.randint(0, x_a.size(1), (1,)),
torch.randint(0, x_a.size(2), (1,)))
# 在选定点上加上扰动
x_a_perturbed[batch_idx, seq_idx, feature_idx] += 10 * torch.randn(1)
# 计算扰动后的motion_a
perturbed_motion_a = self.encode_motion(x_a_perturbed.to('cuda:0'))
# 计算变化量
change = motion_change(perturbed_motion_a, initial_motion_a)
# 如果变化量大于之前保存的最大变化量,则更新x_a和最大变化量
if change > max_change:
x_a = x_a_perturbed
max_change = change
# 最后,x_a将是导致最大motion_a变化的扰动版本
# max_change是这个变化量
# print(max_change)
# print(max_change.shape)
print(x_a_perturbed - init_a.cpu())
motion_a = self.encode_motion(x_a_perturbed.to('cuda:0'))
# motion_a = self.encode_motion(x_a.to('cuda:0'))
body_b, _ = self.encode_body(x_b)
view_c, _ = self.encode_view(x_c)
out = self.decode(motion_a, body_b, view_c)
batch_size, channels, seq_len = out.size()
n_joints = channels // 3
out = out.view(batch_size, n_joints, 3, seq_len)
out = out[:, :, [0, 2], :]
out = out.view(batch_size, n_joints * 2, seq_len)
return out
def cross2d_one(self, x_a):
motion_a = self.encode_motion(x_a)
body_b, _ = self.encode_body(x_a)
view_c, _ = self.encode_view(x_a)
out = self.decode(motion_a, body_b, view_c)
batch_size, channels, seq_len = out.size()
n_joints = channels // 3
out = out.view(batch_size, n_joints, 3, seq_len)
out = out[:, :, [0, 2], :]
out = out.view(batch_size, n_joints * 2, seq_len)
return out
def adv_cross(self,x_a):
motion_a = self.encode_motion(x_a)
body_b, _ = self.encode_body(x_a)
view_c, _ = self.encode_view(x_a)
return motion_a
def reconstruct3d(self, x):
motion_code = self.encode_motion(x)
body_code, _ = self.encode_body(x)
view_code, _ = self.encode_view(x)
out = self.decode(motion_code, body_code, view_code)
return out
def reconstruct2d(self, x):
motion_code = self.encode_motion(x)
body_code, _ = self.encode_body(x)
view_code, _ = self.encode_view(x)
out = self.decode(motion_code, body_code, view_code)
batch_size, channels, seq_len = out.size()
n_joints = channels // 3
out = out.view(batch_size, n_joints, 3, seq_len)
out = out[:, :, [0, 2], :]
out = out.view(batch_size, n_joints * 2, seq_len)
return out
def interpolate(self, x_a, x_b, N):
step_size = 1. / (N-1)
batch_size, _, seq_len = x_a.size()
motion_a = self.encode_motion(x_a)
body_a, body_a_seq = self.encode_body(x_a)
view_a, view_a_seq = self.encode_view(x_a)
motion_b = self.encode_motion(x_b)
body_b, body_b_seq = self.encode_body(x_b)
view_b, view_b_seq = self.encode_view(x_b)
batch_out = torch.zeros([batch_size, N, N, 2 * self.n_joints, seq_len])
for i in range(N):
motion_weight = i * step_size
for j in range(N):
body_weight = j * step_size
motion = (1. - motion_weight) * motion_a + motion_weight * motion_b
body = (1. - body_weight) * body_a + body_weight * body_b
view = (1. - body_weight) * view_a + body_weight * view_b
out = self.decode(motion, body, view)
batch_size, channels, seq_len = out.size()
n_joints = channels // 3
out = out.view(batch_size, n_joints, 3, seq_len)
out = out[:, :, [0, 2], :]
out = out.view(batch_size, n_joints * 2, seq_len)
batch_out[:, i, j, :, :] = out
return batch_out
|