momo / lib /util /visualization.py
Fazhong Liu
fin
7ca9b42
raw
history blame
17.7 kB
import numpy as np
import os
import cv2
import math
import imageio
from tqdm import tqdm
from PIL import Image
from lib.util.motion import normalize_motion_inv, globalize_motion
from lib.util.general import ensure_dir
from threading import Thread, Lock
def interpolate_color(color1, color2, alpha):
color_i = alpha * np.array(color1) + (1 - alpha) * np.array(color2)
return color_i.tolist()
def two_pts_to_rectangle(point1, point2):
X = [point1[1], point2[1]]
Y = [point1[0], point2[0]]
length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5
length = 5
alpha = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1]))
beta = alpha - 90
if beta <= -180:
beta += 360
p1 = ( int(point1[0] - length*math.cos(math.radians(beta))) , int(point1[1] - length*math.sin(math.radians(beta))) )
p2 = ( int(point1[0] + length*math.cos(math.radians(beta))) , int(point1[1] + length*math.sin(math.radians(beta))) )
p3 = ( int(point2[0] + length*math.cos(math.radians(beta))) , int(point2[1] + length*math.sin(math.radians(beta))) )
p4 = ( int(point2[0] - length*math.cos(math.radians(beta))) , int(point2[1] - length*math.sin(math.radians(beta))) )
return [p1,p2,p3,p4]
def rgb2rgba(color):
return (color[0], color[1], color[2], 255)
def hex2rgb(hex, number_of_colors=3):
h = hex
rgb = []
for i in range(number_of_colors):
h = h.lstrip('#')
hex_color = h[0:6]
rgb_color = [int(hex_color[i:i+2], 16) for i in (0, 2 ,4)]
rgb.append(rgb_color)
h = h[6:]
return rgb
def normalize_joints(joints_position, H=512, W=512):
# 找出关节坐标的最大值和最小值
min_x, min_y = np.min(joints_position, axis=0)
max_x, max_y = np.max(joints_position, axis=0)
# 计算关节坐标的范围
range_x, range_y = max_x - min_x, max_y - min_y
# 设定一个缩放的边界保护值,防止关节坐标在缩放后超出画布
buffer = 0.05 # 例如 5% 的边界保护
scale_x, scale_y = (1 - buffer) * W / range_x, (1 - buffer) * H / range_y
# 使用较小的缩放比例来保证所有关节都能适合画布
scale = min(scale_x, scale_y)
# 缩放关节坐标
joints_position_scaled = (joints_position - np.array([min_x, min_y])) * scale
# 计算缩放后关节坐标的新边界
new_min_x, new_min_y = np.min(joints_position_scaled, axis=0)
new_max_x, new_max_y = np.max(joints_position_scaled, axis=0)
# 计算平移量,将关节移到画布中心
translate_x = (W - (new_max_x - new_min_x)) / 2 - new_min_x
translate_y = (H - (new_max_y - new_min_y)) / 2 - new_min_y
# 平移关节坐标
joints_position_normalized = joints_position_scaled + np.array([translate_x, translate_y])
return joints_position_normalized
def joints2image(joints_position, colors, transparency=False, H=512, W=512, nr_joints=15, imtype=np.uint8, grayscale=False, bg_color=(255, 255, 255)):
nr_joints = joints_position.shape[0]
joints_position=normalize_joints(joints_position)
if nr_joints == 49: # full joints(49): basic(15) + eyes(2) + toes(2) + hands(30)
limbSeq = [[0, 1], [1, 2], [1, 5], [1, 8], [2, 3], [3, 4], [5, 6], [6, 7], \
[8, 9], [8, 13], [9, 10], [10, 11], [11, 12], [13, 14], [14, 15], [15, 16],
]#[0, 17], [0, 18]] #ignore eyes
L = rgb2rgba(colors[0]) if transparency else colors[0]
M = rgb2rgba(colors[1]) if transparency else colors[1]
R = rgb2rgba(colors[2]) if transparency else colors[2]
colors_joints = [M, M, L, L, L, R, R,
R, M, L, L, L, L, R, R, R,
R, R, L] + [L] * 15 + [R] * 15
colors_limbs = [M, L, R, M, L, L, R,
R, L, R, L, L, L, R, R, R,
R, R]
elif nr_joints == 15 or nr_joints == 17: # basic joints(15) + (eyes(2))
limbSeq = [[0, 1], [1, 2], [1, 5], [1, 8], [2, 3], [3, 4], [5, 6], [6, 7],
[8, 9], [8, 12], [9, 10], [10, 11], [12, 13], [13, 14]]
# [0, 15], [0, 16] two eyes are not drawn
L = rgb2rgba(colors[0]) if transparency else colors[0]
M = rgb2rgba(colors[1]) if transparency else colors[1]
R = rgb2rgba(colors[2]) if transparency else colors[2]
colors_joints = [M, M, L, L, L, R, R,
R, M, L, L, L, R, R, R]
colors_limbs = [M, L, R, M, L, L, R,
R, L, R, L, L, R, R]
else:
raise ValueError("Only support number of joints be 49 or 17 or 15")
if transparency:
canvas = np.zeros(shape=(H, W, 4))
else:
canvas = np.ones(shape=(H, W, 3)) * np.array(bg_color).reshape([1, 1, 3])
hips = joints_position[8]
neck = joints_position[1]
torso_length = ((hips[1] - neck[1]) ** 2 + (hips[0] - neck[0]) ** 2) ** 0.5
head_radius = int(torso_length/4.5)
end_effectors_radius = int(torso_length/15)
end_effectors_radius = 7
joints_radius = 7
# joints_position[0][0]*=200
# joints_position[0][1]*=200
cv2.circle(canvas, (int(joints_position[0][0]),int(joints_position[0][1])), head_radius, colors_joints[0], thickness=-1)
for i in range(1, len(colors_joints)):
# print(joints_position[i][0])
# joints_position[i][0]*=200
# joints_position[i][1]*=200
# print(joints_position[i][1])
if i in (17, 18):
continue
elif i > 18:
radius = 2
else:
radius = joints_radius
cv2.circle(canvas, (int(joints_position[i][0]),int(joints_position[i][1])), radius, colors_joints[i], thickness=-1)
stickwidth = 2
for i in range(len(limbSeq)):
limb = limbSeq[i]
cur_canvas = canvas.copy()
point1_index = limb[0]
point2_index = limb[1]
#if len(all_peaks[point1_index]) > 0 and len(all_peaks[point2_index]) > 0:
point1 = joints_position[point1_index]
point2 = joints_position[point2_index]
X = [point1[1], point2[1]]
Y = [point1[0], point2[0]]
mX = np.mean(X)
mY = np.mean(Y)
length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5
alpha = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1]))
polygon = cv2.ellipse2Poly((int(mY), int(mX)), (int(length / 2), stickwidth), int(alpha), 0, 360, 1)
cv2.fillConvexPoly(cur_canvas, polygon, colors_limbs[i])
canvas = cv2.addWeighted(canvas, 0.4, cur_canvas, 0.6, 0)
bb = bounding_box(canvas)
canvas_cropped = canvas[:,bb[2]:bb[3], :]
canvas = canvas.astype(imtype)
canvas_cropped = canvas_cropped.astype(imtype)
if grayscale:
if transparency:
canvas = cv2.cvtColor(canvas, cv2.COLOR_RGBA2GRAY)
canvas_cropped = cv2.cvtColor(canvas_cropped, cv2.COLOR_RGBA2GRAY)
else:
canvas = cv2.cvtColor(canvas, cv2.COLOR_RGB2GRAY)
canvas_cropped = cv2.cvtColor(canvas_cropped, cv2.COLOR_RGB2GRAY)
return [canvas, canvas_cropped]
def joints2image_highlight(joints_position, colors, highlights, transparency=False, H=512, W=512, nr_joints=15, imtype=np.uint8, grayscale=False):
nr_joints = joints_position.shape[0]
limbSeq = [[0, 1], [1, 2], [1, 5], [1, 8], [2, 3], [3, 4], [5, 6], [6, 7],
[8, 9], [8, 12], [9, 10], [10, 11], [12, 13], [13, 14]]
# [0, 15], [0, 16] two eyes are not drawn
L = rgb2rgba(colors[0]) if transparency else colors[0]
M = rgb2rgba(colors[1]) if transparency else colors[1]
R = rgb2rgba(colors[2]) if transparency else colors[2]
Hi = rgb2rgba(colors[3]) if transparency else colors[3]
colors_joints = [M, M, L, L, L, R, R,
R, M, L, L, L, R, R, R]
colors_limbs = [M, L, R, M, L, L, R,
R, L, R, L, L, R, R]
for hi in highlights: colors_limbs[hi] = Hi
if transparency:
canvas = np.zeros(shape=(H, W, 4))
else:
canvas = np.ones(shape=(H, W, 3)) * 255
hips = joints_position[8]
neck = joints_position[1]
torso_length = ((hips[1] - neck[1]) ** 2 + (hips[0] - neck[0]) ** 2) ** 0.5
head_radius = int(torso_length/4.5)
end_effectors_radius = int(torso_length/15)
end_effectors_radius = 7
joints_radius = 7
cv2.circle(canvas, (int(joints_position[0][0]*500),int(joints_position[0][1]*500)), head_radius, colors_joints[0], thickness=-1)
for i in range(1, len(colors_joints)):
if i in (17, 18):
continue
elif i > 18:
radius = 2
else:
radius = joints_radius
cv2.circle(canvas, (int(joints_position[i][0]*500),int(joints_position[i][1]*500)), radius, colors_joints[i], thickness=-1)
stickwidth = 2
for i in range(len(limbSeq)):
limb = limbSeq[i]
cur_canvas = canvas.copy()
point1_index = limb[0]
point2_index = limb[1]
#if len(all_peaks[point1_index]) > 0 and len(all_peaks[point2_index]) > 0:
point1 = joints_position[point1_index]
point2 = joints_position[point2_index]
X = [point1[1], point2[1]]
Y = [point1[0], point2[0]]
mX = np.mean(X)
mY = np.mean(Y)
length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5
alpha = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1]))
polygon = cv2.ellipse2Poly((int(mY), int(mX)), (int(length / 2), stickwidth), int(alpha), 0, 360, 1)
cv2.fillConvexPoly(cur_canvas, polygon, colors_limbs[i])
canvas = cv2.addWeighted(canvas, 0.4, cur_canvas, 0.6, 0)
bb = bounding_box(canvas)
canvas_cropped = canvas[:,bb[2]:bb[3], :]
canvas = canvas.astype(imtype)
canvas_cropped = canvas_cropped.astype(imtype)
if grayscale:
if transparency:
canvas = cv2.cvtColor(canvas, cv2.COLOR_RGBA2GRAY)
canvas_cropped = cv2.cvtColor(canvas_cropped, cv2.COLOR_RGBA2GRAY)
else:
canvas = cv2.cvtColor(canvas, cv2.COLOR_RGB2GRAY)
canvas_cropped = cv2.cvtColor(canvas_cropped, cv2.COLOR_RGB2GRAY)
return [canvas, canvas_cropped]
def motion2video(motion, h, w, save_path, colors, bg_color=(255, 255, 255), transparency=False, motion_tgt=None, fps=25, save_frame=True, grayscale=False, show_progress=True):
nr_joints = motion.shape[0]
as_array = save_path.endswith(".npy")
vlen = motion.shape[-1]
out_array = np.zeros([h, w, vlen]) if as_array else None
videowriter = None if as_array else imageio.get_writer(save_path, fps=fps, codec='libx264')
if save_frame:
frames_dir = save_path[:-4] + '-frames'
ensure_dir(frames_dir)
iterator = range(vlen)
if show_progress: iterator = tqdm(iterator)
for i in iterator:
[img, img_cropped] = joints2image(motion[:, :, i], colors, transparency=transparency, bg_color=bg_color, H=h, W=w, nr_joints=nr_joints, grayscale=grayscale)
if motion_tgt is not None:
[img_tgt, img_tgt_cropped] = joints2image(motion_tgt[:, :, i], colors, transparency=transparency, bg_color=bg_color, H=h, W=w, nr_joints=nr_joints, grayscale=grayscale)
img_ori = img.copy()
img = cv2.addWeighted(img_tgt, 0.3, img_ori, 0.7, 0)
img_cropped = cv2.addWeighted(img_tgt, 0.3, img_ori, 0.7, 0)
bb = bounding_box(img_cropped)
img_cropped = img_cropped[:, bb[2]:bb[3], :]
if save_frame:
save_image(img_cropped, os.path.join(frames_dir, "%04d.png" % i))
if as_array: out_array[:, :, i] = img
#else: videowriter.append_data(img)
if as_array: np.save(save_path, out_array)
else: videowriter.close()
return out_array
def motion2video_np(motion, h, w, colors, bg_color=(255, 255, 255), transparency=False, motion_tgt=None, show_progress=True, workers=6):
nr_joints = motion.shape[0]
vlen = motion.shape[-1]
out_array = np.zeros([vlen, h, w , 3])
queue = [i for i in range(vlen)]
lock = Lock()
pbar = tqdm(total=vlen) if show_progress else None
class Worker(Thread):
def __init__(self):
super(Worker, self).__init__()
def run(self):
while True:
lock.acquire()
if len(queue) == 0:
lock.release()
break
else:
i = queue.pop(0)
lock.release()
[img, img_cropped] = joints2image(motion[:, :, i], colors, transparency=transparency, bg_color=bg_color, H=h, W=w, nr_joints=nr_joints, grayscale=False)
if motion_tgt is not None:
[img_tgt, img_tgt_cropped] = joints2image(motion_tgt[:, :, i], colors, transparency=transparency, H=h, W=w, nr_joints=nr_joints, grayscale=False)
img_ori = img.copy()
img = cv2.addWeighted(img_tgt, 0.3, img_ori, 0.7, 0)
# img_cropped = cv2.addWeighted(img_tgt, 0.3, img_ori, 0.7, 0)
# bb = bounding_box(img_cropped)
# img_cropped = img_cropped[:, bb[2]:bb[3], :]
out_array[i, :, :] = img
if show_progress: pbar.update(1)
pool = [Worker() for _ in range(workers)]
for worker in pool: worker.start()
for worker in pool: worker.join()
for worker in pool: del worker
return out_array
def save_image(image_numpy, image_path):
image_pil = Image.fromarray(image_numpy)
image_pil.save(image_path)
def bounding_box(img):
a = np.where(img != 0)
bbox = np.min(a[0]), np.max(a[0]), np.min(a[1]), np.max(a[1])
return bbox
def pose2im_all(all_peaks, H=512, W=512):
limbSeq = [[1, 2], [2, 3], [3, 4], # right arm
[1, 5], [5, 6], [6, 7], # left arm
[8, 9], [9, 10], [10, 11], # right leg
[8, 12], [12, 13], [13, 14], # left leg
[1, 0], # head/neck
[1, 8], # body,
]
limb_colors = [[0, 60, 255], [0, 120, 255], [0, 180, 255],
[180, 255, 0], [120, 255, 0], [60, 255, 0],
[170, 255, 0], [85, 255, 0], [0, 255, 0],
[255, 170, 0], [255, 85, 0], [255, 0, 0],
[0, 85, 255],
[0, 0, 255],
]
joint_colors = [[85, 0, 255], [0, 0, 255], [0, 60, 255], [0, 120, 255], [0, 180, 255],
[180, 255, 0], [120, 255, 0], [60, 255, 0], [0, 0, 255],
[170, 255, 0], [85, 255, 0], [0, 255, 0],
[255, 170, 0], [255, 85, 0], [255, 0, 0],
]
image = pose2im(all_peaks, limbSeq, limb_colors, joint_colors, H, W)
return image
def pose2im(all_peaks, limbSeq, limb_colors, joint_colors, H, W, _circle=True, _limb=True, imtype=np.uint8):
canvas = np.zeros(shape=(H, W, 3))
canvas.fill(255)
if _circle:
for i in range(len(joint_colors)):
cv2.circle(canvas, (int(all_peaks[i][0]), int(all_peaks[i][1])), 2, joint_colors[i], thickness=2)
if _limb:
stickwidth = 2
for i in range(len(limbSeq)):
limb = limbSeq[i]
cur_canvas = canvas.copy()
point1_index = limb[0]
point2_index = limb[1]
if len(all_peaks[point1_index]) > 0 and len(all_peaks[point2_index]) > 0:
point1 = all_peaks[point1_index][0:2]
point2 = all_peaks[point2_index][0:2]
X = [point1[1], point2[1]]
Y = [point1[0], point2[0]]
mX = np.mean(X)
mY = np.mean(Y)
# cv2.line()
length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5
angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1]))
polygon = cv2.ellipse2Poly((int(mY), int(mX)), (int(length / 2), stickwidth), int(angle), 0, 360, 1)
cv2.fillConvexPoly(cur_canvas, polygon, limb_colors[i])
canvas = cv2.addWeighted(canvas, 0.4, cur_canvas, 0.6, 0)
return canvas.astype(imtype)
def visualize_motion_in_training(outputs, mean_pose, std_pose, nr_visual=4, H=512, W=512):
ret = {}
for k, out in outputs.items():
motion = out[0].detach().cpu().numpy()
inds = np.linspace(0, motion.shape[1] - 1, nr_visual, dtype=int)
motion = motion[:, inds]
motion = motion.reshape(-1, 2, motion.shape[-1])
motion = normalize_motion_inv(motion, mean_pose, std_pose)
peaks = globalize_motion(motion)
heatmaps = []
for i in range(peaks.shape[2]):
skeleton = pose2im_all(peaks[:, :, i], H, W)
heatmaps.append(skeleton)
heatmaps = np.stack(heatmaps).transpose((0, 3, 1, 2)) / 255.0
ret[k] = heatmaps
return ret
if __name__ == '__main__':
# 加载.npy文件
motion_data = np.load('/home/fazhong/studio/transmomo.pytorch/out/retarget_1_121.npy')
# 设置视频参数
height = 512 # 视频的高度
width = 512 # 视频的宽度
save_path = 'Angry.mp4' # 保存视频的路径
colors = [(255, 0, 0), (0, 255, 0), (0, 0, 255)] # 关节颜色
bg_color = (255, 255, 255) # 背景颜色
fps = 25 # 视频的帧率
# 调用函数生成视频
motion2video(motion_data, height, width, save_path, colors, bg_color=bg_color, transparency=False, fps=fps)